
VSDP: Verified SemiDefinite Programming

USER’S GUIDE,

Beta Version 0.1 for MATLAB 7.0

Christian Jansson

December 18, 2006

Abstract

VSDP is a MATLAB software package for rigorously solving semidefinite program-
ming problems. It expresses these problems in a notation closely related to the form
given in textbooks and scientific papers. Functions for computing verified forward error
bounds of the true optimal value and verified certificates of feasibility and infeasibility
are provided. All rounding errors due to floating point arithmetic are taken into ac-
count. Computational results are given, including results for the SDPLIB benchmark
problems. This package supports interval input data and sparse format.

1

Copyright (C) 2006 Christian Jansson

Institute for Reliable Computing

Hamburg University of Technology

Schwarzenbergstr. 95, 21071 Hamburg, Germany

Email: jansson@tu-harburg.de

This program is free software for private and academic use. Commercial use or use in

conjunction with a commercial program which requires VSDP or part of VSDP to function

properly is prohibited.

This program is distributed WITHOUT ANY WARRANTY; without even the implied war-

ranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2

Contents

1 Introduction 4

2 Installation 6

3 About VSDP 6

4 Quick Start 7

5 Rigorous Error Bounds for the SDPLIB 20

6 Verification of Ill-posed problems with VSDP 24

7 Interval Arithmetic and INTLAB 32

8 Computing Times 35

9 Conclusion 37

A Appendix 37

3

1 Introduction

“If error analysis could be automated, the mysteries of

floating-point arithmetic could remain hidden; the computer

would append to every displayed numerical result a modest

over-estimate of its uncertainty due to imprecise data and

approximate arithmetic, or else explain what went wrong,

and all at a cost not much higher than if no error analysis

had been performed. So far, every attempt to achieve this

ideal has been thwarted.“

William M. Kahan, The Regrettable Failure of Au-

tomated Error Analysis, 1989.

Semidefinite Programming has emerged as a powerful tool in many different areas ranging

from control engineering to structural design, combinatorial optimization and global opti-

mization (see the Handbook of Semidefinite Programming [31]). One reason is that there

exists a kind of calculus of conic quadratic and semidefinite representable sets and functions,

which offers a systematic way to recognize and reformulate a convex program as a semidef-

inite program. This calculus is applied for example in CVX [5], an optimization modelling

language which is designed to support the formulation and construction of optimization

problems that the user intends from the outset to be convex. On the other hand non-convex

problems are frequently solved by using convex relaxations, where consequently SDP-solvers

can also be used.

Many algorithms for solving semidefinite programming problems require that appropriate

rank conditions are fulfilled, and that strictly feasible solutions of the primal and the dual

problem exist, i.e Slater’s constraint qualification holds. All these solvers do not provide

a guaranteed accuracy or prove existence of optimal solutions. Nevertheless, appropriate

warranties for computed results and rigorous forward error bounds can be useful in many

applications, especially for ill-conditioned problems with dependencies in the input data, or

ill-posed problems. It is well-known that for such problems (but not solely) rounding errors

may affect the computation, and even many state-of-the-art solvers may produce erroneous

approximations (cf. Neumaier and Shcherbina [22]).

Ill-conditioned and ill-posed problems are not rare in practice. In the paper of Ordóñez and

Freund [23] it is stated that 71% of the lp-instances in the NETLIB Linear Programming

Library are ill-posed, and recently Freund, Ordóñez and Toh [3] have shown that 32 out

of 85 problems of the SDPLIB are ill-posed. Likewise, several classes of ill-posed semidefi-

nite programming problems arise from combinatorial problems (see for example Gruber and

4

Rendl [7] and Gruber et al. [6]). Moreover, there are SDP problems with zero duality gap

but no strict complementary primal-dual solution pair. Such problems are also known as

hard instances, and can result in both theoretical and numerical difficulties (see Wei and

Wolkowicz [30]).

VSDP is a software package which computes verified forward error bounds. Verified or

sometimes also called rigorous error bounds means that the computed results are claimed to

be valid with mathematical certainty even in the presence of rounding errors due to floating

point arithmetic; that is, all errors are estimated correctly. VSDP is based on a rigorous

postprocessing applied to the output of semidefinite programming solvers. It is of particular

importance that each solver can be used, and the solver need not produce any error bounds,

neither in the forward nor in the backward error sense. This package implements techniques

described in [11] and [12] and has several features:

• computes verified lower and upper bounds of the optimal value for semidefinite

programs,

• proves existence of feasible and optimal solutions, also for LMI’s,

• provides rigorous certificates of infeasibility,

• facilitates to solve approximately the problem by using well-known semidefinite

programming solvers,

• can handle several formats (full, sparse, SDPA format, interval data, ...)

This guide is organized as follows. In the next section some hints are given how to install

VSDP, and Section 3 contains some remarks about VSDP. Section 4 contains a short the-

oretical introduction together with step-by-step tutorial of VSDP. In Section 5 it is shown

how problems from the SDPLIB can be solved, and moreover a short statistic of the numer-

ical results is presented. The following section 6 is devoted to ill-conditioned and ill-posed

problems. Especially, results about the ill-posed SDPLIB problems, some ill-posed combi-

natorial problems as well as ill-conditioned large scale SDP problems in Electronic Structure

Calculations are presented. Some elementary facts about interval arithmetic and INTLAB

are introduced in Section 7, and it is demonstrated how SDPLIB problems can be solved

with interval input data. Section 8 contains some remarks about running times of VSDP.

Last some conclusions are given, and in the Appendix the tables containing all numerical

results are displayed.

5

2 Installation

VSDP is completely written in MATLAB [15] and requires version 7.0 or higher [15]. VSDP

uses the MATLAB-toolbox INTLAB [26], (INTerval LABoratory), version 5.3 which is avail-

able from

http://www.ti3.tu-harburg.de/rump/intlab

The semidefinite solver SDPT3, version 3.02 [28]

http://www.math.cmu.edu/~reha/sdpt3.html

or alternatively the semidefinite solver SDPA [32]

http://grid.r.dendai.ac.jp/sdpa/download.html

is required. If in the VSDP M-file SDP GLOBALPARAMETER the global variable VSDP CHOICE SDP

= 1, then the SDPT3 solver is chosen, and if VSDP CHOICE SDP = 2 then SDPA is chosen.

The VSDP source files can be downloaded from

http://www.ti3.tu-harburg.de/jansson/vsdp

The installation was successful if the VSDP routine DEMOVSDP runs through.

3 About VSDP

Numerical errors fall into three classes: Intentional errors, like idealized models or dis-

cretization, unavoidable rounding errors, and unintentional bugs and blunders in software

and hardware. VSDP controls rigorously rounding errors. Please contact me, if you discover

unintentional bugs (jansson@tu-harburg.de). In the latter case the version numbers of

the used software together with an appropriate M-file should be provided. Any suggestions,

comments, and criticism are welcome.

The intention was not to write a very sophisticated code which minimizes the storage and the

computing time. The major focus was to write the MATLAB files in a concise form, such that

also students can easily understand the principles of verification used here. An unavoidable

consequence is the interpretation overhead of the MATLAB and INTLAB environments.

Part of this software was presented in some lectures on optimization with result verification

during the winter semester 2005 for students of electrical engineering and computer science.

It is in the nature of verification methods that not every approximate solution can be verified,

as well as approximate solvers cannot compute an approximate solution for each solvable

problem. However, a good verification method should compute rigorous error bounds in

almost all well-posed cases, whenever approximate solvers can compute a sufficiently good

6

approximation. The numerical experiments of VSDP with the SDPLIB suite exhibit that at

least for problems of middle size (up to thousands of constraints and millions of variables)

rigorous lower (upper bounds) of the optimal value can be computed, provided the distance

to dual infeasibility (primal infeasibility) is greater than zero. Notice that feasible problems

with a zero distance to infeasibility are infeasible for appropriate arbitrarily small perturba-

tions of the data, and hence are ill-posed (see Renegar’s condition measure [24] and [23]).

Nevertheless, VSDP allows to treat ill-posed problems rigorously if an a priori assumption

about the existence of an optimal solution and its magnitude is known.

4 Quick Start

“...the routine can produce a computed result that is non-

sensical and the application proceeds as if the results were

correct. ... What should you do? The first defense is to

adopt a sceptical attitude toward numerical results until you

can verify them by independent methods.“

When Good Computers Make Bad Calcu-

lations, R. Meyer, President NAG, 2001,

www.nag.com/local/whitepapers/index.asp

VSDP solves rigorously semidefinite programming problems in block diagonal form:

f ∗p := min
n∑

j=1

〈Cj, Xj〉 s.t.
n∑

j=1

〈Aij, Xj〉 = bi, i = 1, . . . , m

Xj º 0, j = 1, . . . , n,

(1)

where b ∈ Rm, and Cj, Aij, Xj ∈ Ssj , the linear space of real symmetric sj × sj matrices.

By 〈., .〉 we denote the usual inner product on the linear space of symmetric matrices, which

is defined as the trace of the product of two matrices. X º 0 means that X is positive

semidefinite. Hence, º denotes the Löwner partial order on this linear space. If the set

of feasible solutions is empty then we define f ∗p := +∞, and f ∗p := −∞ if the problem is

unbounded.

If sj = 1 for j = 1, . . . , n (i.e. Cj, Aij, and Xj are real numbers), then (1) defines the

standard linear programming problem.

The Lagrangian dual of (1) is

f ∗d := max bT y s.t.
m∑

i=1

yiAij ¹ Cj, j = 1, . . . , n, (2)

7

where y ∈ Rm. We assign f ∗d := −∞, if the set of dual feasible solutions is empty, and

f ∗d := +∞ in the unbounded case. The constraints
∑m

i=1 yiAij ¹ Cj are called linear matrix

inequalities (LMI’s).

Both problems are connected by the weak duality condition

f ∗d ≤ f ∗p . (3)

Strong duality requires in contrast to linear programming additional conditions (see Van-

denberghe and Boyd [29]).

Theorem 1 (Duality Theorem)

a) If (1) is strictly feasible (i.e. there exist feasible positive definite matrices Xj for j =

1, . . . , n) and f ∗p is finite, then f ∗p = f ∗d , the dual supremum is attained, and the set of

dual optimal solutions is bounded.

b) If (2) is strictly feasible (i.e. there exist some y ∈ Rm such that Cj −
∑m

i=1 yiAij are

positive definite for j = 1, . . . , n) and f ∗d is finite, then f ∗p = f ∗d , the primal infimum is

attained, and the set of primal optimal solutions is bounded.

In general, one problem may have optimal solutions and its dual is infeasible, or the duality

gap may be finite and positive at optimality. The strict feasibility assumptions in Theorem

1 are called Slater’s constraint qualifications.

VSDP computes rigorous results by carefully postprocessing the output of semidefinite pro-

gramming solvers. Basically, two theorems (see below) are used which allow to bound rig-

orously the primal and the dual optimal value. For further details, results and proofs we

refer to [11] and [12]. Although this guide is written independently of these papers, a rough

knowledge of them is beneficial. Rigorous error bounds in the special case of linear program-

ming can be found in Neumaier and Shcherbina [22] and [10], and the general convex case

is treated in [9].

VSDP exploits the block-diagonal structure by an n× 2 cell-array blk, n cell-arrays C, X,

and an m× n cell-array A as follows: The j-th blocks C{j},X{j} and the blocks A{i,j} for

i = 1, . . . , m are real symmetric matrices of common size sj which is expressed by

blk{j,1} = ’s’, blk{j,2} = sj.
1

1At the moment only real symmetric matrices are incorporated, which makes the first instruction redun-
dant. But in future versions I want to treat also other types of matrices. I mention that this structure is
closely related to an older version of SDPT3.

8

The block-matrices C{j} and A{i,j} may be symmetric floating-point or interval matrices,

and can be stored in dense or sparse format.

For the purpose of illustration, we start with the following semidefinite programming problem

of dimension m = 4, n = 1, and s1 = 3, i.e. the matrices consist of only one block. The

problem depends on a fixed parameter DELTA:

>> DELTA = 1e-4;

>> C{1} = [0 1/2 0;

1/2 DELTA 0;

0 0 DELTA];

>> A{1,1} = [0 -1/2 0;

-1/2 0 0;

0 0 0];

>> A{2,1} = [1 0 0 ;

0 0 0;

0 0 0];

>> A{3,1} = [0 0 1;

0 0 0;

1 0 0];

>> A{4,1} = [0 0 0;

0 0 1;

0 1 0];

>> b = [1; 2*DELTA; 0; 0];

>> blk{1,1} = ’s’; blk{1,2} = 3;

The routine VSDPCHECK may be used to perform a check whether there are inconsistencies in

the input data:

>> [m, n] = vsdpcheck(blk,A,C,b)

m =

4

n =

1

Sine no error messages occur, all checks w.r.t. the sizes and the data types of the input data

are carried out correctly.

9

It is easy to prove that this problem has a zero duality gap with optimal value −0.5 for every

DELTA > 0. The primal optimal nonzero coefficients are X∗
11 = 2 Delta, X∗

12 = −1, X∗
22 =

1/(2 Delta), and the dual optimal nonzero coefficient is y∗2 = −1/(4 Delta).

For DELTA = 0 the problem is ill-posed with nonzero duality gap, and for negative DELTA it

is primal and dual infeasible. Especially, it follows that the optimal value is not continuous

in DELTA = 0.

At the moment the two semidefinite solvers SDPT3 (version 3.02) [28] and SDPA [32] can

be used in VSDP via the routine MYSDPS. Therefore, VSDP can be used for computing only

approximations with different solvers. The user can integrate other solvers very easily. In the

following, our intention is not to compare these solvers (for a comparison see Mittelmann

[16]), but we want to illustrate that the proposed rigorous error bounds depend very much

on the quality of the computed approximations. By default, the function MYSDPS calls the

semidefinite programming solver SDPT3:

>> [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b);

The output consists of approximations of (i) the primal and dual optimal value both stored in

objt, (ii) the primal and dual solutions Xt, yt, Zt, and (iii) information about termination

and performance stored in info.

>> objt, termination = info(1),

objt =

-5.000322560803474e-001 -5.000000062262615e-001

termination =

0

The solver terminates without any warning if termination = 0. The first four decimal

digits of the primal and dual optimal value are correct, but week duality is not satisfied

since the approximate primal optimal value is smaller than the dual one. In other words,

the algorithm is not backward stable for this example. The approximate solutions Xt and

yt are:

>> celldisp(Xt), yt

Xt{1} =

2.0001290435698e-004 -1.0000000000562e+000 0

-1.0000000000562e+000 4.9996774230724e+003 0

0 0 1.6686221506340e-005

yt =

10

-9.0168234380828e-005

-2.4995491899594e+003

0

0

Hence, for the nonzero coefficients about four decimal digits are correct. If we set in the file

SDP GLOBALPARAMETER the global variable VSDP CHOICE SDP = 2, then the SDPA solver is

chosen via MYSDPS, and we obtain

>> [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b);

>> objt, termination = info(1)

objt =

-8.472053923768221e-001 6.995412095264103e-001

termination =

3

No decimal digit of the optimal value is correct, but a warning is given, which indicates that

the problem is primal or dual infeasible. Also the approximate primal and dual optimal

solutions are nonsensical.

To obtain more reliability we can use the function VSDPLOW which computes a verified lower

bound of the primal optimal value by using a previously computed dual approximation yt.

This function is based on the following theorem:

Theorem 2 Let (xj) be a nonnegative vector which may also have infinite components.

Assume that either there are no primal feasible solutions, or there exists a primal optimal

solution (Xj) where its maximal eigenvalues are bounded by (xj). Let ỹ ∈ Rm (for example

a computed dual approximation). Let

Dj = Cj −
m∑

i=1

ỹiAij and dj ≤ λmin(Dj) for j = 1, . . . , n, (4)

where λmin denotes the smallest eigenvalue. Assume that Dj has at most lj negative eigen-

values. Then:

(i) The primal optimal value is bounded from below by

f ∗p ≥ bT ỹ +
n∑

j=1

ljd
−
j xj =: f ∗

p
where d−j := min(0, dj). (5)

11

(ii) Moreover, if

dj ≥ 0 for xj = +∞, (6)

then the right hand side f ∗
p

is finite.

(iii) If dj ≥ 0 for j = 1, . . . , n, then ỹ is dual feasible and f ∗d ≥ f ∗
p
, and if moreover ỹ is

optimal, then f ∗d = f ∗
p
.

(iv) If dj > 0 for j = 1, . . . , n, then f ∗d = f ∗p and the set of primal optimal solutions is

bounded or empty.

There are no assumptions about the quality of ỹ, but assertion (iii) implies that an approx-

imation close to optimality should produce a rigorous lower bound with modest overestima-

tion. The lower bound f ∗
p

sums up the approximate dual value bT ỹ and the violations of dual

feasibility by taking into account the signs and multiplying these violations with appropriate

primal weights. Observe the subtle difference that f ∗
p

is a lower error bound of the primal

optimal value, not of the dual optimal value. Hence, for problems with non-zero duality gap

it can happen that the dual optimal value is smaller than this lower bound. We mention

that all required quantities can be computed rigorously.

First, we treat the situation where all components (xj) are infinite (i.e. finite bounds are

not known or are not available). We describe briefly how VSDPLOW utilizes this theorem.

If the computed bounds d = (dj) are nonnegative, then (ii) and (iii) imply that f ∗
p

is a

finite lower bound of the primal and the dual optimal value and it is obtained via formula

(5) (in the current implementation we use Weyl’s Perturbation Theorem for computing d).

Moreover, ỹ is a dual feasible solution, and provides a rigorous certificate of dual feasibility.

If dj is negative for some infinite xj, then it follows immediately that the lower bound f ∗
p

is infinite, and therefore of no value. In this case VSDPLOW tries to find iteratively new dual

approximations ỹ by solving appropriate perturbed semidefinite problems until either d is

nonnegative, or dual infeasibility for the perturbed problem is indicated by the semidefinite

solver. In the latter case VSDPLOW sets f ∗
p

= −∞, and the certificate of dual feasibility is

defined as NaN.

VSDPLOW uses as starting point the already computed approximations Xt,yt,Zt (here previ-

ously computed by SDPA), and the call has the form

>> [fL, Y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt)

The output fL, Y, and dl corresponds to the lower bound f ∗
p
, the certificate of dual feasibility

ỹ, and the corresponding vector of eigenvalue bounds d, respectively. In the case where Y =

NaN, all components of the vector dl are set NaN.

In our case this call yields

12

fL =

-Inf

Y =

NaN

dl =

NaN

Therefore, with the SDPA approximations the rigorous lower bound is infinite, and dual

feasibility is not verified.

Secondly, we describe the case, where additional information about finite upper bounds (xj)

of the maximal eigenvalues of a primal optimal solution (Xj) is available. Then condition (6)

is satisfied, and VSDPLOW executes formula (5) yielding a finite lower bound of the optimal

value.

For our example, let the corresponding upper bound be x = 105:

>> xu = 1e5;

>> [fL, Y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt,xu)

fL =

-7.932462706436944e+001

Y =

NaN

dl =

NaN

Hence, a lower bound far away from the optimal value −0.5 is computed. A certificate of

dual feasibility is not found. This is not surprising since the computed SDPA approximations

are far from optimality.

If we set in the file SDP GLOBALPARAMETER the global variable VSDP CHOICE SDP = 1 (de-

fault), then the solver SDPT3 is chosen via MYSDPS, and working with the SDPT3 approxi-

mations yields

>> [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b);

>> [fL, Y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt)

fL =

-5.000000062262615e-001

Y =

-9.016817444180712e-005

-2.499549190259066e+003

13

0

0

dl =

4.319659051028185e-013

Hence, for the same problem, with SDPT3 a finite rigorous lower bound close to the optimal

value together with a certificate of dual feasibility is computed. Since dl is positive, the dual

problem contains the strictly dual feasible interior point Y, i.e. the dual Slater condition

holds true. Therefore, strong duality is verified, and fL is also a lower bound of the dual

optimal value.

If we use, as above, the upper bound xu = 1e5, then for this example we obtain the same

output:

>> xu = 1e5;

>> [fL, Y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt,xu)

fL =

-5.000000062262615e-001

Y =

-9.016817444180712e-005

-2.499549190259066e+003

0

0

dl =

4.319659051028185e-013

We see that the quality of the rigorous results depends strongly on the quality

of the computed approximations, which is an immediate consequence of the proposed

error bound.

Similarly, with function VSDPUP we can compute a verified upper bound fU of the dual

optimal value using the previously computed approximations. This function is based on the

following theorem:

Theorem 3 Let y be a nonnegative vector which may have also infinite components. Assume

that either there exist no dual feasible solutions, or there exists a dual optimal solution where

its absolute value is bounded by y. Let X̃j ∈ Ssj for j = 1, . . . , n, and assume that each X̃j

has at most kj negative eigenvalues. For i = 1, . . . , m and j = 1, . . . , n, let

ri ≥ |bi −
n∑

j=1

〈Aij, X̃j〉| (7)

14

λj ≤ λmin(X̃j), and (8)

%j ≥ sup{λmax(Cj −
m∑

i=1

yiAij) : −y ≤ y ≤ y, Cj −
m∑

i=1

yiAij º 0}. (9)

Then:

(i) The dual optimal value is bounded from above by

f ∗d ≤
n∑

j=1

〈Cj, X̃j〉 −
n∑

j=1

kjλ
−
j %j +

m∑
i=1

riyi =: f
∗
d, (10)

where λ−j := min(0, λj).

(ii) Moreover, if

ri = 0 for yi = +∞ and λj ≥ 0 for %j = +∞, (11)

then the right hand side f
∗
d is finite.

(iii) If λj ≥ 0 and ri = 0 for all i, j, then (X̃j) is primal feasible and f ∗p ≤ f
∗
d, and if

moreover (X̃j) is optimal, then f ∗p = f
∗
d.

(iv) If λj > 0 and ri = 0 for all i, j, then f ∗d = f ∗p and the set of dual optimal solutions is

bounded or empty.

There are no assumptions about the quality of the primal approximation (X̃j), but assertion

(iii) implies that an approximation close to optimality should produce a rigorous upper bound

with modest overestimation.. The bound f
∗
d sums up the primal objective value

n∑
j=1

〈Cj, X̃j〉
and the violations of primal feasibility (ri and λ−j) by taking into account the signs and

multiplying these violations with appropriate weights %j and yi. Notice that only the dual

optimal value is bounded from above. Hence, for problems with non-zero duality gap the

rigorous upper bound may be smaller than the lower bound. However, this cannot happen

for problems where strong duality holds valid, for example linear programming problems, or

if strictly feasible solutions are verified with VSDPUP or VSDPLOW. For well-posed as well as

for ill-posed problems with zero duality gap f
∗
d is also an upper bound of the primal optimal

value. The quantities ri, λj and %j can be computed rigorously by using interval arithmetic.

First, we treat the case where all components of (yi) are infinite and describe shortly VSDPUP.

The primal equations
n∑

j=1

〈Aij, Xj〉 = bi, (i = 1, . . . ,m) are solved with a linear interval solver.

If an enclosure X containing an exact solution of the primal equations can be computed, it is

15

automatically proved that the linear system of equations has full rank. Then, with Weyl’s

Perturbation Theorem (c.f. routine VEIGSYM) verified lower bounds λj of the eigenvalues for

the blocks in X are computed and stored in a vector lb. If lb is nonnegative, then condition

(11) is fulfilled, and X contains a primal feasible solution. If lb is positive, then X contains

a strictly primal feasible solution; that is, the primal Slater condition holds true. If lb

has negative components, then VSDPUP tries to find iteratively new primal approximations

by solving appropriate perturbed semidefinite problems, until either lb is nonnegative, or

primal infeasibility is indicated by the semidefinite solver for the perturbed problem. In the

latter case VSDPUP sets f
∗
d = +∞, and the certificate of primal feasibility X and the vector

lb are defined as NaN.

The call of VSDPUP has the form

>> [fU, X, lb] = vsdpup(blk,A,C,b,Xt,yt,Zt);

The output fU, X and lb corresponds to the upper bound f
∗
d, the interval block-diagonal

matrix (containing the rigorous certificate of primal feasibility), and the vector of eigenvalue

bounds λj, respectively. Because of clarity, we display only the first column of X in midpoint

radius format; that is, the first component denotes the midpoint of the interval and the

second one is the radius.

>> intvalinit(’DisplayMidRad’)

>> fU, Xout = X{1}; Xout(:,1), lb % Only one block

fU =

-4.999677693282600e-001

intval ans =

< 2.000000000000000e-004, 2.710505431213762e-020>

< -1.000000000000000e+000, 0.000000000000000e+000>

< 0.000000000000000e+000, 0.000000000000000e+000>

lb =

1.289076539560735e-008

Hence, we obtain a lower bound of the optimal value together with the interval matrix X

containing a strictly feasible primal solution. The radius of the first component is of order

10−20. Since, lb > 0 Slater’s condition is fulfilled and strong duality holds valid.

Summarizing, for the above problem we have verified strong duality by using the SDPT3

approximations. Moreover, the inequality

−5.000000062262615e− 001 = f ∗
p
≤ f ∗d = f ∗p ≤ f

∗
d = −4.999677693282600e− 001,

16

is fulfilled, and certificates of strictly primal and strictly dual feasible solutions are computed.

The Strong Duality Theorem implies that the primal and the dual problem have a nonempty

compact set of optimal solutions. The upper and lower bounds of the optimal value show

a modest overestimation, mainly due to the accuracy of SDPT3. The bounds are rigorous,

and thus satisfy weak duality.

In the case where finite upper bounds (yi) are available, the condition (11) is trivially satis-

fied, and VSDPUP computes rigorously the finite upper bound (10) without verifying primal

feasibility. Hence, solving the primal equations with a linear interval solver is not necessary,

yielding an acceleration in most cases (for details see [11]). The fact that primal feasibility

is not verified is expressed in VSDPUP by NaN for X and lb. The call of VSDPUP with using the

finite upper bounds (yi) = 105 has the form

>> yu = 1e5 * [1 1 1 1]’;

>> [fU, X, lb] = vsdpup(blk,A,C,b,Xt,yt,Zt,yu)

fU =

-4.987416925451506e-001

X =

NaN

lb =

NaN

For this example the upper bound is worse than the previous one.

For negative DELTA our problem is primal and dual infeasible.

>> DELTA = -1e-4;

>> C{1} = [0 1/2 0 ;

1/2 DELTA 0 ;

0 0 DELTA];

>> b = [1; 2*DELTA; 0; 0];

The routine SDPT3

>> [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b);

>> info(1)

ans =

1

17

gives the termination code 1 with the warning primal infeasibility has deteriorated

too much. In accordance the rigorous lower bound is

>> [fL, Y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt)

fL =

-Inf

Y =

NaN

dl =

NaN

and for the upper bound we obtain

>> [fU, X, lb] = vsdpup(blk,A,C,b,Xt,yt,Zt)

fU =

Inf

X =

NaN

lb =

NaN

Notice that these are the exact optimal values, since the problem is primal and dual infeasible.

However, VSDLOW and VSDPUP only indicate infeasibility, but do not proof this property (both

certificates are NaN). This is the task of VSDPINFEAS which tries to verify primal or dual

unbounded rays that deliver certificates of dual or primal infeasibility. For proving primal

infeasibility we can use VSDPINFEAS as follows:

>> choose = ’p’;

>> [isinfeas, X, Y] = vsdpinfeas(blk,A,C,b,choose,Xt,yt,Zt),

isinfeas =

0

X =

NaN

Y =

NaN

The first line declares that we want to prove primal infeasibility. In the second line the input

of VSDPINFEAS contains the data of the problem and the selection variable choose as well

as the previously computed SDPT3 approximations Xt, yt, Zt. Since isinfeas = 0 the

18

routine VSDPINFEAS has not proved primal infeasibility for this example, and the certificates

X, Y are set to NaN. The reason is that a dual improving ray y must satisfy

−
m∑

i=1

yiAij º 0 for j = 1, . . . , n and bT y > 0,

and for this example a short calculation yields

−
m∑

i=1

yiAij =

−y2

y1

2
−y3

y1

2
0 −y4

−y3 −y4 0

 .

Hence, each improving ray has a zero eigenvalue. Since, we cannot compute exact eigenvalues

with enclosure methods, there is in general always a small overestimation. Hence, positive

semidefiniteness cannot be verified for matrices with zero eigenvalues. This is out of scope

of VSDP.

Proving dual infeasibility is as follows:

>> choose = ’d’;

>> [isinfeas, X, Y] = vsdpinfeas(blk,A,C,b,choose,Xt,yt,Zt),

isinfeas =

0

X =

NaN

Y =

NaN

Also dual infeasibility cannot be proved. An easy calculation shows that the primal improving

ray must satisfy the inequality

X =

0 0 0

0 X22 0

0 0 x53

and with the same argument as above positive semidefiniteness cannot be verified.

The example

>> C{1} = [0 0; 0 0];

>> A{1,1} = [1 0; 0 0];

19

>> A{2,1} = [0 1; 1 0.005];

>> b = [-0.01 1]’;

>> blk{1,1} = ’s’; blk{1,2} = 2;

is primal infeasible, since the first primal equation implies X(1,1) = -0.01. Hence, X cannot

be positive semidefinite.

>> choose = ’p’;

>> [isinfeas, X, Y] = vsdpinfeas(blk,A,C,b,choose),

isinfeas =

1

X =

NaN

Y =

-1.010835012952675e+002

-1.083501295267454e-002

Now, isinfeas = 1 shows that the problem is primal infeasible and a rigorous certificate is

provided by the dual improving ray Y. Observe that vsdpinfeas can be called also without

the optional input Xt,yt,Zt. Then appropriate approximations are generated in this routine,

with the consequence of more computational effort. Since this example is dual feasible,

proving dual infeasibility should not be successful:

>> choose = ’d’;

>> [isinfeas, X, Y] = vsdpinfeas(blk,A,C,b,choose),

isinfeas =

0

X =

NaN

Y =

NaN

An online demonstration of VSDP is contained in the M-file DEMOVSDP.

5 Rigorous Error Bounds for the SDPLIB

For computing verified results of the SDPLIB collection (Borchers [2]) it is required that

these problems are encoded in SDPA sparse format and stored in an appropriate directory.

Then this collection must be called:

20

>> sdplibfiles = dir(’***\sdplib_vsdp/*.dat-s’);

The routine SDPA TO VSDP reads such a problem in SDPA sparse format, and converts it to

VSDP format; here we take the third SDPLIB problem which is from truss topology design:

>> i=3;

>> [blk,A,C,b] = sdpa_to_vsdp...

([’***\sdplib_vsdp/’ sdplibfiles(i).name]);

Problem = sdplibfiles(i).name,

Problem =

arch4.dat-s

The size of the problem can be obtained with

>> blk, size(b)

blk =

’s’ [161]

’s’ [174]

ans =

174 1

Hence, this is a block diagonal problem consisting of two symmetric blocks with dimensions

161 and 174 (yielding 28266 variables), and it has 174 constraints. At first, we solve this

problem approximately with SDPT3, and then we compute the rigorous error bounds for

the optimal value together with the required times in seconds.

>> tic; [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b); t = toc;

>> tic; [fL, Y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt); tfL = toc;

>> tic; [fU, X, lb] = vsdpup(blk,A,C,b,Xt,yt,Zt); tfU = toc;

>> objt, fL, fU, t, tfL, tfU

objt =

-9.726274106486620e-001 -9.726274188393249e-001

fL =

-9.726274188393326e-001

fU =

-9.726274053586463e-001

t =

9.797000000000001e+000

21

tfL =

6.879999999999988e-001

tfU =

2.470300000000000e+001

The bounds for the optimal value provide a guaranteed accuracy of about eight decimal digits

for this example. The time for computing the lower bound is small compared to the times for

the approximations and for the upper bound. This behavior is very typical. There are two

reasons. Firstly, solving the primal equations with a linear interval solver is time consuming.

Secondly, solving perturbed semidefinite programming problems during the iteration is also

time consuming.

The computed quantities X and Y are both unequal NaN with positive minimal eigenvalue

bounds

>> min(lb),min(dl)

ans =

4.491819549324221e-013

ans =

1.459491057731760e-012

Hence, strictly primal and dual feasible solutions are verified, implying strong duality and

compactness of the sets of optimal solutions.

Freund, Ordóñez and Toh [3] have solved 85 problems with SDPT3 out of the 92 problems of

the SDPLIB. They have omitted the four infeasible problems and three very large problems

where SDPT3 produced out of memory. In their paper interior-point iteration counts with

respect to different measures for semidefinite programming problems are investigated, and it

is pointed out that 32 are ill-posed, i.e. Renegar’s condition number is infinite (cf. Renegar

[24]). VSDP could compute (by using SDPT3 as approximate solver) for all 85 problems

a rigorous lower bound of the optimal value and could verify the existence of strictly dual

feasible solutions, which implies a zero duality gap. A finite rigorous upper bound could be

computed for all well-posed problems with one exception; this is hinf2. For all 32 ill-posed

problems VSDP has computed f
∗
d = +∞, which reflects exactly that the distance to the

next primal infeasible problem is zero as well as the infinite condition number.

Detailed numerical results can be found in Tables 2 to 5 in the Appendix. There, we measure

the accuracy by the quantity

µ(a, b) :=
a− b

max{1.0, (|a|+ |b|)/2} .

22

Notice that we do not use the absolute value of a − b, and a negative sign implies a < b.

Therefore, negative signs in the column µ(f̃ ∗p , f̃ ∗d) show that the approximate solutions violate

weak duality and are not backward stable. The computational times for computing the

approximations, the rigorous lower bound and the rigorous upper bound are t, tfL and

tfU, respectively. The termination code tc = 0 means normal termination, otherwise a

warning is displayed.

For the 85 test problems (not counting the 4 infeasible ones) SDPT3 (with default values)

gave 7 warnings, and 2 warnings are given for well-posed problems. Hence, no warnings are

given for 27 ill-posed problems with zero distance to primal infeasibility. In other words,

there is no correlation between warnings and the difficulty of the problem. At least for this

test set our rigorous bounds reflect the difficulty of the problems much better, and they

provide safety, especially in the case where algorithms subsequently call other algorithms, as

is done for example in branch-and-bound methods.

Some major characteristics of the numerical results of VSDP for the well-posed SDPLIB-

problems are as follows: The median of the time ratio for computing the rigorous lower

(upper) bound and the approximation is 0.085, (1.99), respectively. The median of the

guaranteed accuracy for the problems with finite condition number is 7.01 · 10−7. We have

used the median here because there are some outliers.

One of the largest problems which could be solved by VSDP is thetaG51 where the number

of constraints is m = 6910, and the dimension of the primal symmetric matrix X is s = 1001

(implying 501501 variables). For this problem SDPT3 gave the message out of memory, and

we used SDPA as approximate solver. The rigorous lower and upper bounds computed by

VSDP are f ∗
p

= −3.4900 ·102, f
∗
d = −3.4406 ·102, respectively. This is an outlier because the

guaranteed relative accuracy is only 0.014, which may be sufficient in several applications,

but is insufficient from a numerical point of view. However, existence of optimal solutions and

strong duality is proved. The times in seconds for computing the approximations, the lower

and the upper bound of the optimal value are t= 3687.95, tfL= 45.17, and tfU= 6592.52,

respectively.

23

6 Verification of Ill-posed problems with VSDP

“One might say that the majority of applied problems are,

and always have been ill-posed, particularly when they re-

quire numerical answers. Past experience suggests

that the concepts and methods used in the discussion of ill-

posed problems will in turn stimulate advances in pure math-

ematical analysis.”

Fritz John:Translation Editor’s Preface in Tikhonov,

Arsenin: Solutions of Ill-posed Problems, 1977

Given very ill-conditioned or even ill-posed problems, frequently the guidance is that one

should not trust the computed solution, because it is unstable and dominated by round-

ing errors due to floating point arithmetic. Occasionally, such problems are solved with a

higher precision arithmetic yielding irrelevant solutions in many cases. However, in prac-

tice ill-conditioned and ill-posed systems are solved successfully by numerical regularization

methods where the solution is stabilized by including appropriate additional information (see

for example Hansen [8], Neumaier [20], and Tikhonov and Arsenin [27]). More precisely, in

many cases it is implicitly presumed that the problem has a solution and reasonable bounds

of its norm and its smoothness are known a priori. Regularization can be viewed as a

technique which prefers approximate solutions with moderate norm over very large norm

solutions, and solutions to nearby and stable problems are favored. To apply regularization

methods requires the availability of appropriate software and moreover the knowledge that

the problem is ill-posed. The sole method known to the author which is appropriate for ill-

posed semidefinite programming problems with zero duality gap is described in Gruber and

Rendl [7]. The surprising results of Ordóñez and Freund [23] and Freund, Ordóñez and Toh

[3] about the number of ill-posed problems in the NETLIB LP collection and in the SDPLIB

demonstrate that in many applications it is not known whether problems are well-posed or

ill-posed. Therefore, an appropriate a posteriori verification depending upon the degree of

information available about the problem is desirable.

In the following it is important to emphasize that our approach of verification has nearly

nothing in common with regularization methods, which want to find appropriate solutions.

In contrast, we want to verify rigorously strong duality, and we want to compute rigorous

a posteriori error bounds by using already computed approximations, which is a completely

different task but can improve the reliability of the approximations significantly. It turns

out that for ill-posed problems the stage of rigor depends on additional information. Im-

portant is that each solver may be used for computing approximations, irrespectively of its

regularization properties.

24

A well-known source of ill-posed problems arises in combinatorial optimization by trying to

model tight relaxations. Then frequently Slater’s constraint qualification is not fulfilled. As

an example of use (see also [11]) we consider Graph Partitioning Problems. In the same

line other convex relaxations of combinatorial problems may be treated. Graph Partitioning

problems are known to be NP-hard, and finding an optimal solution is difficult. Graph

Partitioning has many applications among those is VLSI design. Because of the nonlinearity

introduced by the positive semidefinite cone, semidefinite relaxations provide tighter bounds

for many combinatorial problems than linear programming relaxations. Here, we investigate

semidefinite relaxations for the special case of Equicut Problems, which have turned out

to deliver tight lower bounds (see also Gruber and Rendl [7]). The general case of Graph

Partitioning Problems can be treated similarly.

Given an edge-weighted graph G with an even number of vertices, the problem is to find a

partitioning of the vertices into two sets of equal cardinality which minimizes the weight of

the edges joining the two sets. The algebraic formulation is obtained by representing the

partitioning as an integer vector x ∈ {−1, 1}n satisfying the parity condition
∑

i xi = 0.

Then the Equicut Problem is equivalent to

min
∑
i<j

aij
1− xixj

2
subject to x ∈ {−1, 1}n,

n∑
i=1

xi = 0,

where A = (aij) is the symmetric matrix of edge weights. This follows immediately, since

1− xixj = 0 iff the vertices i and j are in the same set. The objective can be written as

1

2

∑
i<j

aij(1− xixj) =
1

4
xT (Diag(Ae)− A)x =

1

4
xT Lx,

where e is the vector of ones, and L := Diag(Ae) − A is the Laplace matrix of G. Using

xT Lx = trace(L(xxT)) and X = xxT , it can be shown that this problem is equivalent to

f ∗p = min
1

4
〈L, X〉 subject to diag(X) = e, eT Xe = 0, X º 0, rank(X) = 1.

Since X º 0 and eT Xe = 0 implies X to be singular, the problem is ill-posed, and for

arbitrarily small perturbations of the right hand side the problem becomes infeasible. By

definition, the Equicut Problem has a finite optimal value f ∗p , and a rigorous upper bound

of f ∗p is simply obtained by evaluating the objective function for a given partitioning integer

vector x. Hence, it is left over to compute a rigorous lower bound. At first, the nonlinear

rank one constraint is left out yielding an ill-posed semidefinite relaxation, where the Slater

condition does not hold. The related constraints diag(X) = e and eT Xe = 0 can be written

as

〈Ai, X〉 = bi, bi = 1, Ai = Ei for i = 1, . . . , n, and An+1 = eeT , bn+1 = 0.

25

where Ei is the n × n matrix with a one on the ith diagonal position and zeros otherwise.

Hence, the dual semidefinite problem has the form

max
n∑

i=1

yi s.t. Diag(y1 : n) + yn+1(ee
T) ¹ 1

4
L, y ∈ Rn+1.

The constraints diag(X) = e, X º 0 imply that the principle two-dimensional submatrices

must be positive semidefinite, and hence −1 ≤ Xij ≤ 1 for the primal feasible solutions.

Therefore, we have from the model the additional information of existence of an optimal

solution with finite upper bounds x = λmax(X) = n. The application of Theorem 2 yields:

Corollary 1 Let ỹ ∈ Rn+1, and assume that the matrix

D =
1

4
L−Diag(ỹ1 : n)− ỹn+1(ee

T).

has at most l negative eigenvalues, and let d ≤ λmin(D). Then

f ∗p ≥
n∑

i=1

ỹi + l · n · d− =: f ∗
p
.

In Table 1 some numerical results for problems given by Gruber and Rendl [7] are displayed.

The number of nodes is denoted by n. For this suite of ill-posed problems with up to 601

constraints and 180300 variables SDPT3 has computed approximations of the dual opti-

mal value f̃ ∗d , which are close to the approximate primal optimal value f̃ ∗p (see the column

µ(f̃ ∗p , f̃ ∗d)). The negative signs in this column show that weak duality is violated in four cases.

The small quantities µ(f
∗
d, f

∗
p
) show that the overestimation of the rigorous lower bound f ∗

p

can be neglected. SDPT3 gave tc = 0 (normal termination) for the first five ill-posed exam-

ples. Only in the last case n = 600 the warning tc = −5 (that means : Progress too slow)

was returned. We have computed the lower bound f ∗
p

first by using Corollary 1 and then

with the general routine VSDPLOW. Both bounds are equal but the time differs drastically.

In Table 1 the times for computing the approximations with SDPT3, for computing f ∗
p

by

using Corollary 1, and for computing f ∗
p

by using Theorem 2 are denoted by t, t1, and t2,

respectively. It follows that the additional time t1 for computing the rigorous bound f ∗
p

is

small compared to the time t needed for the approximations. The reason for the different

times t1 and t2 is that in the first case the special structure of the problems is taken into

account, which yields an acceleration due to properties of our current implementation (see

also the section about computing times).

Summarizing, VSDP facilitates cheap and rigorous lower bounds with modest overestimation

for the optimal value of these ill-posed semidefinite relaxations. These bounds can be viewed

26

n f ∗
p

µ(f̃ ∗p , f̃ ∗d) µ(f̃ ∗d , f ∗
p
) t t1 t2 tc

100 -3.58065e+003 -7.117e-008 3.843e-011 4.2 0.5 0.4 0

200 -1.04285e+004 -7.018e-008 9.621e-010 7.9 0.2 2.3 0

300 -1.90966e+004 -2.573e-008 8.918e-009 21.1 0.9 8.6 0

400 -3.01393e+004 -1.633e-008 3.008e-008 39.0 2.0 20.5 0

500 -4.22850e+004 1.431e-008 2.584e-008 67.5 3.7 40.0 0

600 -5.57876e+004 5.418e-009 1.829e-008 124.7 6.0 73.9 -5

Table 1: Results for Graph Partitioning

as an a posteriori verification of the approximations computed by SDPT3, and they can be

used in a branch-and-bound scheme to obtain verified results. We mention that for these

examples the approximations computed by SDPT3 are meaningful, but in other cases an

appropriate regularization may be necessary.

Another very important class of ill-posed problems are discrete inverse problems, which

arise in many applications like tomography, image restoration, identification in dynamical

systems and many other areas. In these applications, there is a discrete version of a compact

operator (i.e. a very ill-conditioned matrix A), a noisy right hand side b obtained from

measurements, and the problem is to find a meaningful solution x which minimizes the

residual ‖Ax− b‖2 and satisfies additionally constraints like non-negativity of the variables.

Since the matrix A is very ill-conditioned, the computation of an accurate solution of the

equation Ax = b in general yields a nonsensical solution of large norm. This solution causes

for small perturbations of A large variations Ax, and hence should be avoided. A common

technique is to use Tikhonov regularization or a similar variant. Regularization can be viewed

as adding norm constraints for the solution and its smoothness, and thus yields a convex

quadratically constrained optimization problem which can be represented as a semidefinite

program, and verified a posteriori with VSDP.

A further source of ill-posed problems that we want to mention here are originally well-

posed problems which are transformed to ill-posed ones due to simple details of modelling:

For example because of redundant constraints, identically zero variables, or converting free

variables x to the difference of nonnegative variables x = x+−x−. The latter transformation

is never a good idea although often mentioned in many textbooks. Free variables are fre-

quently used to eliminate a row, but more wicked is the fact that this transformation causes

an unbounded set of optimal solutions. Whatever the value of an optimal variable x∗, the

transformed variables x∗+ and x∗− have infinitely many values with the same difference equal

to x∗. Using interior-point methods causes sometimes divergence because of divergence of the

values x∗+ and x∗−, while preserving a constant difference. However, this transformation has

the property that the transformed problem has an optimal solution with finite upper bounds

27

of its variables equal to the upper bounds of the optimal variables for the original solution.

These finite bounds can be used in Theorems 2 and 3 for computing rigorous bounds of the

optimal value. Similar arguments can be applied to other transformations.

But even if the modelling, the transformations or established bounds for the magnitude of the

optimal solution are not available, the numerical reliability of the computed approximations

can be improved. Computer codes for optimization algorithms terminate if the optimality

conditions are approximately fulfilled, whereas the optimality conditions are evaluated by

using floating point arithmetic. For semidefinite programming the optimality conditions re-

quire the computation of residuals for linear equations and of some minimal eigenvalues. At

the best the computed approximations are backward stable, i.e they are exact solutions of

slightly perturbed problems. However, this is questionable if the problem is ill-conditioned

or the input data cannot vary independently. Moreover, especially because of the comple-

mentarity condition the minimal eigenvalues are close to zero, causing numerical difficulties

for several eigenvalue solvers. In our experiments especially the MATLAB routine EIGS,

which is a Krylov subspace method, has produced erroneous approximations in many cases.

The routines VSDPLOW and VSDPUP may be used for improving the reliability as follows: It

is evident that trusting only the magnitude of a computed solution is much weaker than to

accept the computed digits. This is in the sense of Kahan [13] who writes:

“Nobody can know even roughly how wrong a computation is without knowing

at least roughly what would have been right.”

Therefore, similar to the case of regularization methods for ill-posed problems, we assume

the existence of an optimal solution and accept bounds of the form

xj = µ · λmax(X̃j) for j = 1, . . . , n,

and yi = µ · |ỹi| for i = 1, . . . , m,

where (X̃j), ỹ are the computed approximations, and µ is a positive factor of order one. A

more conservative estimation would be factors like µ = 10, an optimistic one (trusting at

least one decimal digit) is µ = 0.1. Since this boundedness assumption is not verified, the

results are not fully rigorous. Nevertheless, this stage of rigor is completely with rounding

error control, and we may speak of a rounding error controlled weak verification.

In the following we illustrate the use of VSDPLOW and VSDPUP for the ill-posed problem

gpp124-1 of the SDPLIB. We call this problem:

>> sdplibfiles = dir(’***\sdplib_vsdp/*.dat-s’);

>> i=19;

28

>> [blk,A,C,b] = sdpa_to_vsdp...

([’***\sdplib_vsdp/’ sdplibfiles(i).name]);

Problem = sdplibfiles(i).name,

Problem =

gpp124-1.dat-s

The size of the problem can be obtained with

>> blk, size(b)

blk =

’s’ [124]

ans =

125 1

Hence, this is a block diagonal problem consisting of one symmetric block with dimension

124 (yielding 7750 variables), and it has 125 constraints. At first, we solve this problem

without bounds for the solution.

>> tic; [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b); t = toc;

>> tic; [fL, Y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt); tfL = toc;

>> tic; [fU, X, lb] = vsdpup(blk,A,C,b,Xt,yt,Zt); tfU = toc;

>> objt, fL, fU, t, tfL, tfU

objt =

7.343071180003589e+000 7.343073711914145e+000

fL =

7.343073667562324e+000

fU =

Inf

t =

3.483999999999998e+000

tfL =

4.827999999999999e+000

tfU =

8.015999999999998e+000

We obtain a finite rigorous lower bound fL, and looking at Y and dl it can be seen that the

dual problem contains strictly interior points. Hence, strong duality is fulfilled. The upper

bound fU = Inf reflects that the problem is ill-posed and the distance to primal infeasibility

is zero. If we accept bounds for the optimal solution with the conservative factor µ = 10

29

>> mu = 10;

>> xu = mu * max(eig(Xt{1}));

>> yu = mu * abs(yt);

and solve the problem rigorously using the previous approximations, then:

>> tic; [fL, Y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt,xu); tfL = toc;

>> tic; [fU, X, lb] = vsdpup(blk,A,C,b,Xt,yt,Zt,yu); tfU = toc;

>> objt, fL, fU, t, tfL, tfUfL =

objt =

7.343071180003589e+000 7.343073711914145e+000

fL =

7.343073234661038e+000

fU =

7.343096928246631e+000

t =

3.483999999999998e+000

tfL =

5.160000000000000e-001

tfU =

9.529999999999999e-001

The lower and the upper bound of the optimal value are close together. Therefore, if one

accepts the existence of an optimal solution within the above bounds xu and yu, then an

accuracy of about 6 decimal digits is guaranteed for this ill-posed problem. Because here no

iterations and verified solutions of linear systems are necessary, the required computational

times are small compared with the previous times.

The other numerical results for the SDPLIB can be found in Tables 6 and 7. There, in all

cases we have chosen the bounds with the conservative factor µ = 10. The major character-

istics of these results are as follows: The median of the time ratio for computing the rigorous

lower(upper) bound and the approximation is 0.078, (0.21), respectively. The median of the

guaranteed accuracy for these problems is 2.5210−6, and the medium of the approximate

accuracy is −4.3810−8. It is noteworthy to observe that the accuracy is independent of the

condition number of the problem.

We mention that accepting the order of magnitude of an approximate large norm solution

produces large bounds for the variables, which is reflected by more distant values f ∗
p

and

f
∗
d. Therefore, a semidefinite solver producing regularized small norm solutions yield better

rigorous bounds for the optimal value. Notice that semidefinite solvers usually terminate if

30

the optimality conditions are satisfied approximately. But these conditions do not distinguish

between regularized and non-regularized approximations.

It is well-known that the dual variables describe the sensitivity and stability of the problem,

in the sense that large dual variables indicate instability of the primal optimal solution if

the input data are slightly perturbed. This means that small nonnegative bounds yi for

the dual variables characterize stable problems. On the other hand there may also be hard

constraints, i.e. constraints where even small violations are not allowed from the modelling

point of view. Such constraints can be modelled by setting the bound yi = ∞. Then in

Theorem 3, property (ii) the condition ri = 0 requires that the i-th equation must be satisfied,

which causes to solve this equation rigorously. Unfortunately, in the current version of VSDP

either y is handled as a finite vector or an infinite vector. The case where some components

are finite and some are infinite will be implemented in the next version.

Last, we look at verified error bounds for large-scale semidefinite programs in electronic struc-

ture calculations. The problem of computing a close lower bound of the ground state energy

of atomic and molecular systems can be described as a large semidefinite program by using a

variational approach in which the two-body reduced density matrix is the unknown quantity

(see for example Fukuda et al. [4] and Nakata et al. [18]). In [4] the ground stage energy of

a large variety of molecules is determined, and the input data of the semidefinite programs

can be downloaded in SDPA format from http://www.is.titech.ac.jp/ mituhiro/. In

[4] it is mentioned that the SDP problems must be solved to high accuracy, typically 7 digits.

Morever, they used SDPARA (a parallel version of SDPA), and since this code cannot handle

equality constraints in the dual SDP they replaced the equations by perturbed inequalities.

Hence, these problems are ill-conditioned.

As an illustrative example we take the molecule NH- using r = 12 basis states. This yields

a semidefinite program with m = 948, and the size of the block matrices is 6, 6, 6, 6, 15,

15, 36, 15, 15, 36, 72, 36, 36, 20, 90, 90, 20, 306, 306, 90, 90. If we solve this problem with

SDPA then we obtain

% Generating VSDP input

>> [blk,A,C,b] = sdpa_to_vsdp(’NH_3SIGMA-_STO-6GN8r12g1T2.dat-s’);

% Approximately solving with SDPA

>> [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b);

% Verified lower bound

>> [fL, y, dl] = vsdplow(blk,A,C,b,Xt,yt,Zt);

% Verified upper bound

>> [fU, X, lb] = vsdpup(blk,A,C,b,Xt,yt,Zt);

>> objt, fL, fU,

objt =

31

5.843807529542937e+001 5.833070686520880e+001

fL =

5.833075312544655e+001

fU =

5.843803999358170e+001

Hence, the approximate as well as the guaranteed accuracy is about 3 decimal digits, far

away from the required accuracy of 7 digits. The times for computing the approximations,

the rigorous lower bound and the rigorous upper bound are 431, 1344 and 49 seconds,

respectively.

An insufficient accuracy for some of these problems was already observed in [18]. They

write that the numerical accuracy becomes worse for some molecules. Comparing their

results with the full-CI method they noticed that some computed SDP energies have values

higher than the full-CI ones, though from the theory it follows that these values must

be lower that the full-CI ones. We mention that our verified lower bound always gives

values lower than the ground state energy. If we use for the above problem SDPT3 then

we obtain the rigorous lower and upper bound fL = 5.839100045713466e+001 and fU =

5.839111213365607e+001, yielding 6 correct decimal digits.

VSDP could not verify the extremely large-scale molecule problems (m > 7000 and more

than 2.5 million variables), since SDPA as well as SDPT3 did not compute an approximation

after 3 days, where then the programs were stopped. Thus the largest verified molecule

problems are those with r = 16 basis states. For example Ammonia (NH3) yields m = 2964

with size of the block matrices 8, 8, 8, 8, 28, 28, 64, 28, 28, 64, 128, 64, 64, 56, 224, 224,

56, 736, 736, 224, 224. Using SDPA we obtain the rigorous lower and upper bound fL =

6.792487010727453e+001 and fU = 6.792487859935491e+001, yielding 7 correct decimal

digits.

7 Interval Arithmetic and INTLAB

In VSDP the input data can also be intervals. In the following, only some elementary

definitions about interval arithmetic are required. For interested users we recommend to

look at the two INTLAB [26] demonstrations DEMOINTVAL and DEMOINTLAB. There, input,

output, operations, and functions for interval quantities are described in a very compact and

clear form. For mathematical details see also Rump [25]. There are a number of textbooks

on interval arithmetic and self-validating methods which can be highly recommended to

readers. These include Alefeld and Herzberger [1], Kearfott [14], Moore [17], and Neumaier

[19], [21].

32

Let V be one of the spaces R (real numbers), Rn (real vectors), Rm×n(real matrices) with

partial ordering ≤. If v, v ∈ V, then the box

v := [v, v] := {v ∈ IV : v ≤ v ≤ v} (12)

is called an interval quantity in V with lower bound v and upper bound v. In particular,

IR, IRn and IRm×n denote the set of real intervals a = [a, a], the set of real interval vectors

x = [x, x], and the set of real interval matrices A = [A,A], respectively. The real operations

A ◦ B with ◦ ∈ {+,−, ·, /} between real numbers, real vectors and real matrices can be

generalized to interval operations. The result A ◦ B is defined as the interval hull of all

possible real results, that is

A ◦B :=
⋂
{C ∈ IV : A ◦B ∈ C for all A ∈ A, B ∈ B}. (13)

All interval operations can be easily executed by working appropriately with the lower and

upper bounds of the interval quantities. For example, in the simple case of addition, we

obtain

A + B = [A + B,A + B]. (14)

For interval quantities A,B ∈ IV we define

mid(A) := (A + A)/2 as the midpoint, (15)

rad(A) := (A− A)/2 as the radius. (16)

(17)

Real quantities v are embedded in the interval quantities by identifying v = v = [v, v].

INTLAB allows several possibilities to generate intervals. Firstly, by specification of mid-

point and radius

>> x = midrad([3 2], [2 5])

intval x =

[1.0000, 5.0000] [-3.0000, 7.0000]

or by the representation with lower and upper bounds

>> x = infsup([1 -3] , [5 7])

33

intval x =

[1.0000, 5.0000] [-3.0000, 7.0000]

Lower and upper bounds, midpoint and radius can be obtained as follows:

>> inf_(x)

ans =

1 -3

>> sup(x)

ans =

5 7

>> rad(x)

ans =

2 5

>> mid(x)

ans =

3 2

An operation uses interval arithmetic if one of the operands is of type intval, for example

>> x/2

intval ans =

[0.5000, 2.5000] [-1.5000, 3.5000]

If the input data of a semidefinite programming problem are intervals then the rigorous

bounds computed by VSDP hold valid for all problems with real input data inside the

intervals. Following, we solve the Truss Topology Design Problem arch4 with interval input

data:

% Generating the problem

[blk,A,C,b] = sdpa_to_vsdp...

([’*** \sdplib_vsdp/’ sdplibfiles(3).name]);

% Dimension

m = length(b);

n = length(C);

% Generating interval input data with relative radius r

r=1e-8;

for j = 1 : n

CI{j} = midrad(C{j},r*abs(C{j}));

34

for i = 1 : m

AI{i,j} = midrad(A{i,j},r*abs(A{i,j}));

end

end

bI = midrad(b,r*abs(b));

% Call of SDPT3 for the midpoint problem:

[objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b);

% Lower and upper bounds for the interval problem:

[fL, Y, dl] = vsdplow(blk,AI,CI,bI,Xt,yt,Zt);

[fU, X, lb] = vsdpup(blk,AI,CI,bI,Xt,yt,Zt);

[fL; fU]

ans =

-9.726469030815481e-001

-9.725514124620581e-001

For arch4 the optimal value for all problems with real input data inside the intervals is

between fL and fU. Hence, a relative perturbation radius of 10−8 yields a relative radius of

4.9 · 10−5 for the set of optimal values. Looking at the other output data it follows that Y is

a strictly dual feasible solution for all real problems, and the interval quantity X contains for

each real problem a strictly primal feasible solution. Especially, strong duality holds valid

for all real problems.

8 Computing Times

The aim in designing VSDP was to write the programs in a convenient form, appropriate

also for students. The user can specify the block-diagonal structure in the more natural way

of cell arrays. Operations such as extracting selected elements of a matrix or the operations

vsvec (rounding error free vectorization operator) and vsmat (corresponding rounding error

free inverse operator) are written in MATLAB. This causes a loss of efficiency.

The difference in the running time can be very dramatic if additionally intervals are used.

The reason is that in INTLAB the new interval data types and the interval operations are

added to MATLAB by classes and objects. For the purpose of illustration let us generate

randomly n = 100 blocks of dimension s = 20, and let m = 100:

n = 100; m = n; s = 20;

35

y = rand(m,1);

yint = intval(y);

for j = 1 : n

for i = 1 : m

A{i,j} = rand(s);

end

end

Computing the defect matrices (cf. (4)) by using the usual rounding to nearest yields:

tic;

for j = 1 : n

D{j} = zeros(s);

for i = 1 : m

D{j} = D{j} + y(i) * A{i,j};

end

end;

toc;

Elapsed time is 0.235000 seconds.

INTLAB makes the monotonic rounding modes available. Computing an enclosure of the

defect matrices by using monotonic rounding yields

tic

for j = 1 : n

setround(-1);

Dlow{j} = zeros(s);

for i = 1 : m

Dlow{j} = Dlow{j} + y(i) * A{i,j};

end

setround(1);

Dup{j} = zeros(s);

for i = 1 : m

Dup{j} = Dup{j} + y(i) * A{i,j};

end

D{j} = infsup(Dlow{j},Dup{j});

end;

setround(0);

toc;

Elapsed time is 0.656000 seconds.

36

If interval quantities are involved, then we obtain

tic;

for j = 1 : n

D{j} = zeros(s);

for i = 1 : m

D{j} = D{j} - yint(i) * A{i,j};

end

end

toc;

Elapsed time is 9.953000 seconds.

which is about fifteen times slower than using monotonic rounding.

Using the tool PROFILE it can be seen that for the SDPLIB problem gpp250-3 about 90%

of the computing time for VSDLOW is required for computing the defect matrices. An efficient

C implementation should be able to save a similar amount of time.

9 Conclusion

Although VSDP is not the most efficient implementation of rigorous error bounds, the nu-

merical results for well-posed and ill-posed problems demonstrate that VSDP provides safety

to the user in a reasonable amount of computational effort. This is especially important if

the user cannot judge the computed approximations. For example in branch-bound-and-cut

procedures semidefinite subproblems are likely to be ill-conditioned or ill-posed. Erroneous

approximations may lead to incorrect decisions and the loss of global optimal solutions. This

can be avoided if rigorous error bounds are used.

A Appendix

37

Table 2: Rigorous lower bounds for the SDPLIB
Problem f

∗
d f∗

d
µ(f

∗
d, f

∗
d
) µ(f̃∗p , f̃∗d)

arch0 -5.6651e-001 -5.6652e-001 5.12e-006 6.53e-007
arch2 -6.7151e-001 -6.7152e-001 4.46e-006 -2.70e-007
arch4 -9.7263e-001 -9.7263e-001 1.07e-008 8.19e-009
arch8 -7.0570e+000 -7.0570e+000 3.56e-007 1.85e-008

control1 -1.7776e+001 -1.7785e+001 4.91e-004 7.28e-008
control2 -8.2958e+000 -8.3000e+000 5.05e-004 -1.56e-007
control3 -1.3605e+001 -1.3633e+001 2.08e-003 -3.96e-007
control4 -1.9760e+001 -1.9794e+001 1.75e-003 -7.32e-007
control5 -1.6698e+001 -1.6884e+001 1.10e-002 -4.80e-006
control6 -3.6621e+001 -3.7304e+001 1.85e-002 -8.03e-007
control7 -2.0326e+001 -2.0625e+001 1.46e-002 -9.99e-007
control8 -1.9927e+001 -2.0286e+001 1.79e-002 -1.26e-006
control9 -1.3993e+001 -1.4675e+001 4.76e-002 -3.03e-006
control10 -3.5891e+001 -3.8533e+001 7.10e-002 -2.78e-006
control11 -2.6994e+001 -3.1959e+001 1.68e-001 -6.48e-006
equalG11 -6.2766e+002 -6.2916e+002 2.38e-003 2.92e-009
equalG51 -4.0056e+003 -4.0056e+003 1.05e-005 5.30e-010
gpp100 Inf 4.4944e+001 NaN -7.00e-008

gpp124-1 Inf 7.3431e+000 NaN -3.45e-007
gpp124-2 Inf 4.6862e+001 NaN -7.70e-008
gpp124-3 Inf 1.5301e+002 NaN -4.51e-008
gpp124-4 Inf 4.1899e+002 NaN -7.31e-008
gpp250-1 Inf 1.5445e+001 NaN -7.12e-008
gpp250-2 Inf 8.1869e+001 NaN -4.26e-008
gpp250-3 Inf 3.0354e+002 NaN -3.06e-008
gpp250-4 Inf 7.4733e+002 NaN -1.82e-008
gpp500-1 Inf 2.5321e+001 NaN -1.09e-008
gpp500-2 Inf 1.5606e+002 NaN -2.91e-008
gpp500-3 Inf 5.1302e+002 NaN -1.14e-009
gpp500-4 Inf 1.5670e+003 NaN 4.66e-009

hinf1 Inf -2.0328e+000 NaN -1.01e-004
hinf2 Inf -1.0967e+001 NaN -3.37e-005
hinf3 Inf -5.6955e+001 NaN -2.26e-004
hinf4 Inf -2.7477e+002 NaN -1.36e-005
hinf5 Inf -3.6241e+002 NaN -5.51e-004
hinf6 Inf -4.4911e+002 NaN -7.04e-004
hinf7 Inf -3.9083e+002 NaN 4.40e-005
hinf8 Inf -1.1618e+002 NaN -3.62e-004
hinf9 -7.5500e+001 -2.3739e+002 1.03e+000 -3.57e-002
hinf10 Inf -1.0886e+002 NaN -1.39e-003
hinf11 Inf -6.5938e+001 NaN -1.15e-003
hinf12 Inf -7.5031e-001 NaN -6.66e-001
hinf13 Inf -4.5987e+001 NaN -3.55e-002
hinf14 Inf -1.3000e+001 NaN 2.22e-004
hinf15 Inf -2.6085e+001 NaN -8.33e-002

38

Table 3: Rigorous lower bounds for the SDPLIB
Problem f

∗
d f∗

d
µ(f

∗
d, f

∗
d
) µ(f̃∗p , f̃∗d)

infd1 Inf -Inf NaN -2.00e+000
infd2 Inf -Inf NaN -2.00e+000
infp1 -3.9776e+009 -Inf NaN -2.00e+000
infp2 -3.5022e+001 -Inf NaN -2.00e+000

maxG11 -6.2916e+002 -6.2916e+002 1.03e-008 1.01e-008
maxG32 -1.5676e+003 -1.5676e+003 1.66e-007 -1.19e-008
maxG51 -4.0063e+003 -4.0063e+003 9.68e-009 1.22e-008
mcp100 -2.2616e+002 -2.2616e+002 1.39e-008 5.76e-009

mcp124-1 -1.4199e+002 -1.4199e+002 7.93e-009 1.61e-008
mcp124-2 -2.6988e+002 -2.6988e+002 3.69e-008 1.65e-008
mcp124-3 -4.6775e+002 -4.6775e+002 1.43e-008 -2.83e-009
mcp124-4 -8.6441e+002 -8.6441e+002 8.21e-009 -8.22e-010
mcp250-1 -3.1726e+002 -3.1726e+002 8.53e-009 4.77e-010
mcp250-2 -5.3193e+002 -5.3193e+002 7.15e-009 2.01e-009
mcp250-3 -9.8117e+002 -9.8117e+002 4.62e-009 7.35e-009
mcp250-4 -1.6820e+003 -1.6820e+003 6.78e-009 -4.63e-009
mcp500-1 -5.9815e+002 -5.9815e+002 1.03e-008 5.94e-009
mcp500-2 -1.0701e+003 -1.0701e+003 1.90e-008 3.19e-009
mcp500-3 -1.8480e+003 -1.8480e+003 1.58e-008 2.05e-008
mcp500-4 -3.5667e+003 -3.5667e+003 2.18e-008 -1.49e-008

qap10 Inf 1.0925e+003 NaN -1.16e-004
qap5 Inf 4.3600e+002 NaN 1.18e-009
qap6 Inf 3.8140e+002 NaN -9.41e-005
qap7 Inf 4.2479e+002 NaN -7.25e-005
qap8 Inf 7.5687e+002 NaN -1.22e-004
qap9 Inf 1.4099e+003 NaN -4.54e-005

qpG11 -2.4487e+003 -2.4487e+003 3.85e-010 3.85e-010
qpG51 -1.1818e+004 -1.1818e+004 5.13e-009 5.13e-009
ss30 -2.0239e+001 -2.0240e+001 3.98e-005 2.85e-008

theta1 -2.3000e+001 -2.3000e+001 3.55e-008 3.45e-009
theta2 -3.2879e+001 -3.2879e+001 7.02e-007 -1.45e-008
theta3 -4.2167e+001 -4.2167e+001 2.41e-006 -7.93e-010
theta4 -5.0321e+001 -5.0321e+001 1.13e-006 -1.08e-008
theta5 -5.7232e+001 -5.7232e+001 3.80e-006 -5.00e-008

thetaG11 -4.0000e+002 -4.0000e+002 3.40e-008 3.41e-008
truss1 9.0000e+000 9.0000e+000 2.24e-007 1.12e-009
truss2 1.2338e+002 1.2338e+002 9.78e-007 -1.56e-007
truss3 9.1100e+000 9.1100e+000 8.01e-008 2.96e-009
truss4 9.0100e+000 9.0100e+000 1.61e-007 2.34e-009
truss5 1.3264e+002 1.3264e+002 3.61e-006 -5.10e-010
truss6 9.0160e+002 9.0100e+002 6.69e-004 -2.38e-005
truss7 9.0021e+002 9.0000e+002 2.33e-004 -8.89e-006
truss8 1.3313e+002 1.3311e+002 8.39e-005 -5.36e-006

39

Table 4: Rigorous lower bounds for the SDPLIB
Problem tc t tfL tfU

arch0 0 11.28 0.34 24.14
arch2 0 11.02 0.28 13.13
arch4 0 10.11 0.30 13.78
arch8 0 10.67 10.05 13.50

control1 0 0.84 0.02 0.84
control2 0 1.86 0.03 2.09
control3 0 4.09 0.08 4.94
control4 0 7.41 0.16 10.45
control5 0 15.86 0.23 22.38
control6 0 30.64 0.41 46.17
control7 0 55.05 0.73 95.23
control8 0 93.22 1.06 308.75
control9 0 148.50 211.31 273.89
control10 0 238.11 352.33 475.95
control11 0 347.75 543.20 746.98
equalG11 0 197.34 220.73 608.09
equalG51 0 431.97 492.52 723.81
gpp100 0 2.11 2.59 2.99

gpp124-1 0 3.19 4.56 7.66
gpp124-2 0 3.22 4.33 9.83
gpp124-3 0 3.03 4.14 4.69
gpp124-4 0 3.28 4.41 8.31
gpp250-1 0 10.16 34.97 29.66
gpp250-2 0 10.03 19.78 29.25
gpp250-3 0 9.73 19.44 20.44
gpp250-4 0 9.27 19.55 34.08
gpp500-1 0 62.91 254.47 199.11
gpp500-2 0 54.27 143.75 132.39
gpp500-3 0 56.88 143.50 333.91
gpp500-4 0 50.39 136.84 192.42

hinf1 0 0.94 0.06 7.23
hinf2 0 0.72 0.06 10.14
hinf3 0 0.88 0.06 9.26
hinf4 0 0.86 0.06 3.02
hinf5 -4 0.84 0.06 5.56
hinf6 0 1.02 0.05 6.77
hinf7 -4 0.77 0.05 7.17
hinf8 -4 0.86 0.05 4.30
hinf9 2 0.94 0.05 4.97
hinf10 0 1.44 0.03 1.39
hinf11 0 1.44 0.06 4.70
hinf12 0 2.38 2.42 4.41
hinf13 0 1.39 0.08 3.08
hinf14 -4 1.11 0.06 5.50
hinf15 0 1.50 0.09 4.78

40

Table 5: Rigorous lower bounds for the SDPLIB
Problem tc t tfL tfU

infd1 1 0.27 4.78 0.27
infd2 1 0.27 4.70 0.25
infp1 2 0.55 0.50 0.72
infp2 2 0.61 0.47 0.92

maxG11 0 62.31 12.05 278.94
maxG32 0 750.95 162.66 3452.05
maxG51 0 166.48 24.84 895.02
mcp100 0 1.33 0.09 3.39

mcp124-1 0 1.84 0.11 0.55
mcp124-2 0 2.08 0.13 5.27
mcp124-3 0 2.16 0.14 2.95
mcp124-4 0 2.28 0.17 5.77
mcp250-1 0 4.75 0.41 9.86
mcp250-2 0 4.97 0.47 10.11
mcp250-3 0 5.88 0.58 4.33
mcp250-4 0 5.89 0.66 11.20
mcp500-1 0 20.56 2.86 60.66
mcp500-2 0 25.99 3.44 64.83
mcp500-3 0 29.03 3.56 68.23
mcp500-4 0 28.98 4.34 69.09

qap10 0 10.20 2.31 43.97
qap5 0 0.63 0.06 3.17
qap6 0 1.06 0.13 4.05
qap7 0 1.69 0.23 5.33
qap8 0 2.89 0.52 9.23
qap9 0 5.86 1.09 17.81

qpG11 0 329.76 54.27 928.08
qpG51 0 675.34 104.74 1252.06
ss30 0 25.39 0.75 31.16

theta1 0 0.70 0.09 0.89
theta2 0 2.80 1.19 6.05
theta3 0 12.02 6.81 50.50
theta4 0 38.86 21.56 196.55
theta5 0 123.86 54.92 408.39

thetaG11 -7 212.23 12.03 455.83
truss1 0 0.72 0.06 0.84
truss2 0 4.41 0.27 9.75
truss3 0 0.98 0.08 1.13
truss4 0 0.75 0.06 0.88
truss5 0 11.03 0.61 13.28
truss6 0 25.77 2.05 31.09
truss7 0 22.77 1.30 49.91
truss8 0 12.97 1.48 19.86

41

Table 6: Rigorous lower bounds for the SDPLIB with boundedness qualifications
Problem f

∗
d µ(f̃∗p , f̃∗d) µ(f

∗
d, f

∗
d
) t tfL tfU tc

arch0 -5.66517e-001 6.52664e-007 3.89755e-006 11.14 0.48 2.22 0
arch2 -6.71516e-001 -2.69574e-007 3.88491e-006 10.44 0.36 2.31 0
arch4 -9.72627e-001 8.19066e-009 1.45549e-008 10.55 0.30 2.31 0
arch8 -7.05698e+000 1.84683e-008 1.67410e-007 10.05 0.31 2.11 0

control1 -1.77846e+001 7.27895e-008 2.57191e-005 1.08 0.03 0.08 0
control2 -8.30000e+000 -1.56463e-007 6.78045e-005 2.69 0.08 0.09 0
control3 -1.36333e+001 -3.95628e-007 1.21512e-005 5.33 0.11 0.23 0
control4 -1.97942e+001 -7.31969e-007 2.28246e-005 10.81 0.14 0.61 0
control5 -1.68837e+001 -4.80154e-006 7.46780e-005 18.14 0.27 1.44 0
control6 -3.73045e+001 -8.02555e-007 7.67001e-005 36.69 0.47 4.14 0
control7 -2.06251e+001 -9.98899e-007 3.50385e-005 63.03 0.81 7.44 0
control8 -2.02864e+001 -1.25749e-006 3.86513e-005 84.89 1.42 14.53 0
control9 -1.46755e+001 -3.02920e-006 1.67502e-004 140.91 1.84 30.06 0
control10 -3.85332e+001 -2.77620e-006 2.02277e-004 224.97 2.97 53.06 0
control11 -3.19589e+001 -6.47652e-006 1.94653e-004 334.70 3.84 87.22 0
equalG11 -6.29155e+002 2.91690e-009 4.85907e-007 197.94 13.41 134.33 0
equalG51 -4.00560e+003 5.30399e-010 8.59726e-007 432.20 26.92 263.13 0
gpp100 4.49435e+001 -7.00054e-008 6.64166e-007 2.22 0.33 0.58 0

gpp124-1 7.34307e+000 -3.44803e-007 3.22665e-006 3.41 0.61 1.14 0
gpp124-2 4.68623e+001 -7.70226e-008 7.25990e-007 3.42 0.63 1.11 0
gpp124-3 1.53014e+002 -4.50687e-008 4.17787e-007 3.17 0.55 1.13 0
gpp124-4 4.18988e+002 -7.30945e-008 7.74977e-007 3.42 0.58 1.08 0
gpp250-1 1.54449e+001 -7.12482e-008 8.99341e-007 10.00 4.66 8.98 0
gpp250-2 8.18690e+001 -4.26302e-008 5.56033e-007 9.98 4.78 9.03 0
gpp250-3 3.03539e+002 -3.06479e-008 4.27528e-007 9.45 4.83 9.03 0
gpp250-4 7.47328e+002 -1.82234e-008 3.03032e-007 9.34 4.72 9.14 0
gpp500-1 2.53205e+001 -1.09285e-008 4.28074e-006 63.19 42.47 74.89 0
gpp500-2 1.56060e+002 -2.91009e-008 5.17852e-007 54.94 42.63 74.83 0
gpp500-3 5.13018e+002 -1.13886e-009 1.06758e-007 57.36 42.77 74.83 0
gpp500-4 1.56702e+003 4.65840e-009 6.36747e-008 51.17 42.73 74.86 0

hinf1 -2.03301e+000 -1.00564e-004 9.34650e-004 1.20 0.05 0.06 0
hinf2 -1.09678e+001 -3.36629e-005 1.03539e-003 0.98 0.06 0.05 0
hinf3 -5.69677e+001 -2.26145e-004 2.41706e-003 1.11 0.08 0.05 0
hinf4 -2.74771e+002 -1.35848e-005 1.39322e-004 1.11 0.08 0.05 0
hinf5 -3.62613e+002 -5.50585e-004 6.25571e-002 1.11 0.06 0.05 -4
hinf6 -4.49426e+002 -7.03519e-004 6.37027e-003 1.27 0.08 0.05 0
hinf7 -3.90810e+002 4.39663e-005 8.30217e-004 1.02 0.06 0.05 -4
hinf8 -1.16222e+002 -3.61756e-004 5.08181e-003 1.13 0.06 0.05 -4
hinf9 -2.46011e+002 -3.56709e-002 2.00000e+000 1.22 0.06 0.06 2
hinf10 -1.09014e+002 -1.38839e-003 1.32661e-002 1.77 0.05 0.05 0
hinf11 -6.60146e+001 -1.15421e-003 1.18289e-002 1.78 0.08 0.06 0
hinf12 -1.56488e+000 -6.65981e-001 2.00000e+000 2.88 0.06 0.08 0
hinf13 -4.76508e+001 -3.55343e-002 4.74862e-001 1.75 0.06 0.09 0
hinf14 -1.29971e+001 2.21506e-004 2.66706e-002 1.31 0.08 0.11 -4
hinf15 -2.83516e+001 -8.32685e-002 1.77700e+000 1.80 0.09 0.14 0

42

Table 7: Rigorous lower bounds for the SDPLIB with boundedness qualifications
Problem f

∗
d µ(f̃∗p , f̃∗d) µ(f

∗
d, f

∗
d
) t tfL tfU tc

infd1 -5.19432e+000 -2.00000e+000 2.00000e+000 0.33 0.06 0.05 1
infd2 5.42061e+000 -2.00000e+000 2.00000e+000 0.36 0.05 0.05 1
infp1 -5.94121e+009 -2.00000e+000 2.00000e+000 0.70 0.05 0.05 2
infp2 -2.57524e+009 -2.00000e+000 2.00000e+000 0.77 0.06 0.05 2

maxG11 -6.29165e+002 1.00858e-008 3.76123e-008 62.16 12.42 188.06 0
maxG32 -1.56764e+003 -1.19489e-008 2.56489e-007 748.03 161.17 2329.02 0
maxG51 -4.00626e+003 1.21822e-008 1.30882e-007 166.20 24.25 311.64 0
mcp100 -2.26157e+002 5.76094e-009 6.01171e-008 1.44 0.11 0.27 0

mcp124-1 -1.41990e+002 1.61076e-008 1.72602e-007 1.94 0.09 0.45 0
mcp124-2 -2.69880e+002 1.64754e-008 1.80790e-007 2.22 0.11 0.47 0
mcp124-3 -4.67750e+002 -2.83436e-009 8.83177e-008 2.30 0.16 0.52 0
mcp124-4 -8.64412e+002 -8.21767e-010 4.77618e-008 2.45 0.19 0.50 0
mcp250-1 -3.17264e+002 4.76695e-010 3.23009e-008 4.66 0.42 3.63 0
mcp250-2 -5.31930e+002 2.01287e-009 3.98574e-008 4.95 0.47 3.61 0
mcp250-3 -9.81173e+002 7.34522e-009 5.46713e-008 6.03 0.53 3.47 0
mcp250-4 -1.68196e+003 -4.62904e-009 5.97408e-008 5.84 0.64 3.44 0
mcp500-1 -5.98149e+002 5.93604e-009 7.21147e-008 20.88 2.86 29.73 0
mcp500-2 -1.07006e+003 3.19174e-009 1.24832e-007 26.20 3.30 29.95 0
mcp500-3 -1.84797e+003 2.05128e-008 2.62117e-007 29.33 3.53 27.80 0
mcp500-4 -3.56674e+003 -1.49140e-008 1.60369e-007 29.27 4.16 30.19 0

qap10 1.09236e+003 -1.16219e-004 1.05064e-003 10.45 2.56 5.69 0
qap5 4.36000e+002 1.17714e-009 2.66595e-007 0.75 0.08 0.11 0
qap6 3.81368e+002 -9.41390e-005 8.50372e-004 1.20 0.13 0.25 0
qap7 4.24759e+002 -7.24794e-005 7.13475e-004 1.89 0.23 0.55 0
qap8 7.56773e+002 -1.21964e-004 1.12744e-003 3.19 0.52 1.11 0
qap9 1.40982e+003 -4.54030e-005 5.83654e-004 6.08 0.97 2.73 0

qpG11 -2.44866e+003 3.84682e-010 3.96618e-010 329.47 54.09 891.63 0
qpG51 -1.18180e+004 5.13070e-009 5.29349e-009 675.59 104.88 1200.11 0
ss30 -2.02395e+001 2.84736e-008 1.80610e-006 25.70 0.73 3.33 0

theta1 -2.30000e+001 3.44570e-009 2.71595e-008 0.81 0.11 0.13 0
theta2 -3.28792e+001 -1.45377e-008 1.41623e-007 3.00 1.23 1.80 0
theta3 -4.21670e+001 -7.93078e-010 8.77306e-008 11.58 6.42 8.95 0
theta4 -5.03212e+001 -1.07772e-008 1.91404e-007 38.19 21.75 27.84 0
theta5 -5.72323e+001 -5.00122e-008 5.00145e-007 123.92 51.55 69.55 0

thetaG11 -4.00000e+002 3.40521e-008 3.47616e-008 212.95 12.25 381.63 -7
truss1 9.00000e+000 1.12011e-009 1.13109e-006 0.95 0.13 0.08 0
truss2 1.23380e+002 -1.56295e-007 4.70668e-006 5.95 0.38 0.64 0
truss3 9.11000e+000 2.95941e-009 5.40589e-007 1.27 0.09 0.11 0
truss4 9.01000e+000 2.33560e-009 1.25934e-006 0.97 0.09 0.08 0
truss5 1.32636e+002 -5.09856e-010 7.71633e-006 12.73 0.81 2.05 0
truss6 9.00979e+002 -2.37959e-005 2.34220e-004 34.64 2.80 6.64 0
truss7 8.99993e+002 -8.88501e-006 1.08335e-004 31.44 1.83 3.67 0
truss8 1.33114e+002 -5.36216e-006 5.97081e-005 15.38 1.84 5.89 0

43

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press,

New York, 1983.

[2] B. Borchers. SDPLIB 1.2, A Library of Semidefinite Programming Test Problems.

Optimization Methods and Software, 11(1):683–690, 1999.

[3] R.M. Freund, F. Ordóñez, and K. Toh. Behavioral Measures and their Correlation with

IPM Iteration on Semi-Definite Programming Problems.

[4] M. Fukuda, B.J. Braams, M. Nakata, M.L. Overton, J.K. Percus, M. Yamashita, and

Z. Zhao. Large-scale semidefinte programs in electronic structure calculation. Mathe-

matical Programming, to appear.

[5] M. Grant, S. Boyd, and Y. Ye. cvx User’s Guide, 2006.

http://www.stanford.edu/∼boyd/cvx.

[6] G. Gruber, S. Kruk, F. Rendl, and H. Wolkowicz. Presolving for Semidefinite Pro-

grams Without Constraint Qualifications. In G. Gruber et al., editor, Proceedings of

HPOPT97, Second Workshop on High Performance Optimization Techniques, Rotter-

dam, Netherlands, 1997.

[7] G. Gruber and F. Rendl. Computational experience with ill-posed problems in semidefi-

nite programming. Computational Optimization and Applications, 21(2):201–212, 2002.

[8] C.P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, 1998.

[9] C. Jansson. A rigorous lower bound for the optimal value of convex optimization prob-

lems. J. Global Optimization, 28:121–137, 2004.

[10] C. Jansson. Rigorous Lower and Upper Bounds in Linear Programming. SIAM J.

Optimization (SIOPT), 14(3):914–935, 2004.

[11] C. Jansson. Termination and Verification for Ill-posed Semidefinite Programming Prob-

lems, 2005.

[12] C. Jansson, D. Chaykin, and C. Keil. Rigorous Error Bounds for the Optimal Value in

Semidefinite Programming. 2005. To appear in SIAM Journal on Numerical Analysis

(SINUM).

[13] W.M. Kahan. The Improbability of Probabilistic Error Analysis for Nu-

merical Computations. talk given at the UCB Statistics Colloquium, 1996.

http://http.cs.berkeley.edu/∼wkahan/improber.ps.

44

[14] R.B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic Pub-

lisher, Dordrecht, 1996.

[15] MATLAB User’s Guide, Version 7. The MathWorks Inc., 2004.

[16] H.D. Mittelmann. An independent benchmarking of SDP and SOCP solvers. Math.

Programming Ser. B, 95:407–430, 2003.

[17] R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.

[18] M. Nakata, M. Fukuda, K. Nakata, and K. Fujisawa. Variational calculus of fermion

second-order reduced density matrices by semidefinite programming algorithm. J. of

Chemical Physics, 114(19):8282–8292, 2001.

[19] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 1990.

[20] A. Neumaier. Solving ill-conditioned and singular linear systems: A tutorial on regu-

larization. SIAM Review (SIREV), 40:636–666, 1998.

[21] A. Neumaier. Introduction to Numerical Analysis. Cambridge University Press, 2001.

[22] A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer programming.

Mathematical Programming, Ser. A, 99:283–296, 2004.

[23] F. Ordóñez and R.M. Freund. Computational experience and the explanatory value of

condition measures for linear optimization. SIAM J. Optimization (SIOPT), 14(2):307–

333, 2003.

[24] J. Renegar. Linear Programming, complexity theory, and elementary functional analy-

sis. Mathematical Programming, 70(3):279–351, 1995.

[25] S.M. Rump. Fast and parallel interval arithmetic. BIT Numerical Mathematics,

39(3):539–560, 1999.

[26] S.M. Rump. INTLAB - Interval Laboratory, the Matlab toolbox for verified computa-

tions, Version 5.3, 2006.

[27] A.N. Tikhonov and V.L. Arsenin. Solutions of Ill-posed Problems. John Wiley, New

York, 1977.

[28] R.H. Tütüncü, K.C. Toh, and M.J. Todd. Solving semidefinite-quadratic-linear pro-

grams using SDPT3. Math. Program., 95B(2):189–217, 2003.

[29] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review (SIREV),

38(1):49–95, 1996.

45

[30] H. Wei and H. Wolkowicz. Generating and Measuring Instances of Hard Semidefinite

Programs. www.optimization-online.org/DB_HTML/2006/01/1291.html, 2006.

[31] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite Pro-

gramming, volume 27 of International Series in Operations Research and Management

Science. Kluwer Academic Publishers, Boston, MA, 2000.

[32] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA

6.0. Optimization Methods and Software, 18(4):491–505, 2003.

46

