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Abstract

The explicit determination of the largest admissible constant controller is dif-
ficult. For linear systems with all poles in the domain of stability but at least one
non-minimum phase zero outside, an improved upper bound on real proportional
gain controllers is given. Examples show the improvement and further possible
margins.1
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1 Introduction

Given the transfer function of a plantp(s) and a controllerc(s) stabilizing it in closed
loop. What conditions are imposed by the plant configuration on the norm of the con-
troller?

Designate byS(s) = (1+ p(s) · c(s))−1 the so-called sensitivity function. It is then
well-known that asymptotic internal stability of the closed feedback loop is equivalent
to the following three properties [7] :

i) S(s) has poles just inside the domain of stability (i.e., the open left half-plane).

ii) Zeros(S(s)) ⊃ Poles(p(s)) (outside the domain of stability).

iii) Zeros (S(s)−1) ⊃ Zeros(p(s)) (outside the domain of stability).

In this presentation, we study the following question: How large may we take a sta-
bilizing proportional controller? We will exhibit a new upper bound (cf. Cor. 1) for
rational (or more general: meromorphic) systems with all poles in the left half-plane,

∗Inst. f. Techn. Informatik VI (4-11), Technische Universität Hamburg-Harburg, 21071 Hamburg, Ger-
many (batra@tuhh.de). [Phone: ++49(40)42878-3478, Fax: -2798]

1The results were presented at the ECC ’03, Cambridge, UK.

1



but at least one non-minimum phase zero in the right half-plane. The bound is related
to the sensitivity of zeros. It does not depend on the number of zeros (comp. Th. 1).

We will outline analytic limitations to proportional controllers in the next section,
present the steps leading to the bound in the following section, give the proofs sub-
sequently, and close the paper with two worked examples.

2 Known limitation for proportional control

Consider the closed right half-plane and suppose the functionp(s) has no poles there.

If we consider only scalar, real controllersc(z) = k, we find that of conditions i), ii),
iii) as above only i) means a limitation. ForS(z) = (1+ p(z) ·c(z))−1 to have no poles
in the right half-plane, whilec(z) = k, this means−1

p(z) 6= k. This yields the following.

Fact: Every real controller c(z) = k with

|k|< [sup{|p(z)| : ℜz≥ 0, ℑ(p(z)) = 0}]−1 (1)

is stabilizing.

The right hand side of (1) was denotedLopt by Blondel and Bertilsson in [3] as this fig-
ure is the maximal size of the largest proportional gain controller such that all smaller
ones are stabilizing. This valueLopt might in practice often be replaced by the un-
constrained figureL := [sup{|p(z)| : ℜz≥ 0}]−1 asL ≤ Lopt is easier to compute. To
assess any such approximation of the optimum upper bounds may be used. Thus,
Blondel and Bertilsson [3] proved the following upper bound oncomplexproportional
controllersk.

Theorem 1 Let p(s) = ∑∞
ν=0 pνzν be the transfer function of a system with no poles

in the closed right-half plane. Suppose p(s) has at least one zero s0 in the open right
half-plane. Let m designate the number of zeros of p(s) in the open right half plane, q
the multiplicity of the zero s0 andℜ(s0) the real part of the zero s0. Suppose k∈ C to
be a stabilizing proportional controller. Then2

|k|< 9· (m+1)q!

|2·ℜ(s0)|q ·
∣∣p(q) (s0)

∣∣ . (2)

The above bound holds a fortiori for realk. The proof in [3] relies on the study of
functions omitting two values. As the number of zeros is supposed to be finite and
known, a complex function omitting the values 1 and 0 is constructed. Using the sharp
version of a special result by Landau and Carathéodory (see [5]), the above bound is
established. The quantity on the right hand side of (2) is denoted byU in [3], and is
such that no complex controller of larger absolute value is stabilizing. Hence, we have

L≤ Lopt ≤U . (3)

2Please note: The termq! is missing in [3].
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We might want to inquire which real proportional controllers are not stabilizing the
system. The general bound for complex proportional gain may be too conservative for
this important case. Hence, we consider the largest absolute valueR such that allreal
proportional compensators smaller in absolute value are stabilizing. In the following,
we establish a boundR> R for real gain controllers with

L≤ Lopt ≤ R< 9R≤U .

In general,Rcompares toU as the constant 2 to the factor 9(m+1) in (2).

The improvement is achieved by studying the maximal possible set of image values.
This value set must be bounded for the functions considered. Taking into consideration
the image covered byp(z) depending on the maximum real value, we may establish a
new bound using ‘standard’ conformal mappings to the unit disc. As we will see, we
can sharpen this further to obtain bounds near the order of magnitude of the optimal
valueLopt.

3 Functions with image restrictions

We build our analysis on the simple fact that the coefficients of a bounded function are
bounded. One of the quantitative expressions for this is Gutzmer’s lemma (see for ex.
[6]), a consequence of the maximum principle. We denote the open unit disc byD.

Lemma 1 (Gutzmer)

Suppose g(z) : D→ D given as g(z) = ∑∞
v=0gvzv is holomorphic. Then

∞

∑
v=0

|gv|2≤ 1.

We will derive the new bound as a consequence of the following observation, which is
proved together with the theorem in the next section.

Proposition 1 Suppose we have a meromorphic function p(z) = ∑∞
ν=0 pνzν with no

poles in the closed unit discD, but a zero z0 at the origin of arbitrary multiplicity
q≥ 1. Defineδ := sup

{
|p(z)| : z∈ D, ℑ(p(z)) = 0

}
.

Then

1
2
|pq|=

1
2
| p

(q)(0)
q!
| ≤ δ.

Moreover, for a simple root

| p1

2δ
|2 + | p2

2δ
|2≤ 1.

For the half-planeℜs> 0 and an arbitrary zero there, the proposition translates via
conformal mapping to the following.
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Theorem 2 Given a meromorphic transfer function p(s) with no poles in the closed
right half-plane. Defineκ := sup{|p(s)| : ℜs≥ 0, Im(p(s)) = 0}.

Suppose that s0,ℜs0 > 0 is a zero of p(s) with multiplicity q. Then

1
2
|2·ℜ(s0)|q · |p(q) (s0)/q!| ≤ κ. (4)

With

f1 :=−2ℜs0|p′(s0)|,

f2 := 2

(
s0 +1

s0 +1

)2(
p′′(s0)(ℜs0)2− p′(s0)ℜs0

s0 +2

)
,

for a simple root s0 the boundκ is no less than the smallest positive root of

| f1
2κ
|2 + | f2

2κ
|2 = 1. (5)

As it is clear from the above discussion of (1), the inverse of the maximum real value
on the half-plane, i.e. 1/κ, gives the supremum bound such that all smaller real pro-
portional gains are stabilizing controllers, i.e.Lopt. We infer our desired boundR for
proportional controllers by taking the inverse of our function bound.

Corollary 1 Given p(s) meromorphic, with no poles in the closed right half-plane and
at least one zero s0 in the open half-plane. The largest real value R such that all real k
with |k|< R are proportional stabilizing p(s) is bounded by

R<
2

|2·ℜ(s0)|q ·
∣∣p(q) (s0)/q!

∣∣ =: R, (6)

where q denotes the multiplicity of the zero. Moreover, for the case of a simple root an
upper boundR is the inverse of the smallest positive root of(5).

Remark. Using the full force of Lemma 1 or related results, computing more coeffi-
cients we might improve this further. We give no explicit formulas here.

4 Derivation of results

Proof of the Proposition:

The meromorphic functionp(z) has by assumption no poles in the disc|z| ≤ 1. The
function values taken on the unit disc hence lie in a bounded domain. Thus, the limes
superior of all real values,δ, is finite. Therefore, the image ofr(z) is contained in the
doubly slit planeM := C\{(−∞,−δ]∪ [δ,∞)}.
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We map this maximal image domainM back to the unit circleD via

φ(s) =
1−
√

1−s/δ
1+s/δ

1+
√

1−s/δ
1+s/δ

, (7)

where the branch of the square-root is chosen such that
√

1 = 1.

Obviously,φ(0) = 0. We haveφ(M)⊂ D, especially

φ(p(D))⊂ D. (8)

Let the power series expansion ofp(z) be given as:p(z) = ∑∞
ν=0 pνzν. Consider the

composite functionφ(p(z)), and compute the first coefficients of the square root term
in (7)

√
1− p(z)/δ
1+ p(z)/δ

=

√
1− 2

δ
p(z)

1+ p(z)
δ

p(0)=0
=

√
1− 2

δ
· (p1 ·z+ p2z2 + . . .)
1+(1/δ)(p1z+ p2z2 + . . .)

= 1− p1

δ
·z+

(
1
2

p2
1

δ2 −
p2

δ

)
z2 +z3 · (. . .) .

Thus, if we consider our mappingφ(p(z)) we have

φ(p(z))

=
1−
(

1− p1·z
δ +

[
1
2

p2
1

δ2 − p2
δ

]
·z2 + . . .

)
1+
(

1− p1
δ ·z+

[
1
2

p2
1

δ2 − p2
δ

]
·z2 . . .

)
=

p1

2δ
·z+(

p2

2δ
) ·z2 + . . . .

Using now Gutzmer’s coefficient bound for the first coefficientφ(p(z)), we find
∣∣ 1

2·δ p1
∣∣2≤

1, hence
∣∣ p1

2

∣∣ ≤ δ. We observe, that the analogue result holds true forpq in place
of p1, if 0 = p0 = p1 = . . . = pq−1. The first claim of the proposition follows as
pq = p(q)(0)/q!.

Consider the special case of a simple zero. Using Gutzmer’s bound again, we find

| p1

2δ
|2 + | p2

2δ
|2≤ 1

�

Proof of the Theorem:

We proceed as in [3], to compose a suitable mapping of the unit disc to the right-half
plane which transfers the origin to the zeros0.

For the canonical mapping of the unit disc to the right half-planeH+ := {z : ℜz> 0},
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σ : D→ H+, ω 7−→ 1+ ω
1−ω

definez0 by

σ(z0) = s0 ⇔
1+z0

1−z0
= s0⇔ z0 =

s0−1
s0 +1

= 1− 2
s0 +1

.

Thus, givenz0 we define

µ : D→ D , λ 7−→ λ−z0

λ ·z0−1
,

and the composite functionσ(µ(·)) maps the unit disc to the right half plane. As
µ(0) = z0 andσ(z0) = s0, the origin is mapped tos0.

As by assumption,s0 is aq-fold zero ofp(s), there is aq-fold zero of f (z) := p(σ(µ(z))) =
∑ fνzν at the origin. Using our proposition, we find that the real maximumδ of f on the
unit circle which is equal the real maximumκ of p on the half-plane is lower bounded
by

|
fq
2
| ≤ κ.

For a simple zero we obtain

| f1
2κ
|2 + | f2

2κ
|2≤ 1. (9)

This leaves us the task to computef1, f2 for simple zeros in terms of our original
function p(s). (The case of a multiple zero is completely analogue).

We find for

f (z) = p(σ(µ(z)))

that

f ′(z) = p′ (σ(µ(z))) ·σ′ (µ(z)) ·µ′ (z) (10)

and

f ′′ (z) =

p′′ (σ(µ(z))) ·
(
σ′ (µ(z)) ·µ′ (z)

)2 +

. . . + p′ (σ(µ(z)))
[
σ′′ (µ(z))

(
µ′ (z)

)2 + σ′ (µ(z))µ′′ (z)
]

(11)

From the definition, we have
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σ(z) =
1+z
1−z

= 1+
2z

(1−z)
,σ′(z) =

2(1−z)+2z
(1−z)2 =

2
(1−z)2

σ′′(z) =
−2(−2)(1−z)

(1−z)4 =
4

(1−z)3 =
2σ′(z)
(1−z)

,

µ(z) =
z−z0

z·z0−1
,

µ′(z) =
(z·z0−1)−z0 · (z−z0)

(z·z0−1)2

=
z(z0−z0)+z0 ·z0−1

(z·z0−1)2 =
z0 ·z0−1

(z·z0−1)2 ,

µ′′(z) = −2z0 (z·z0−1) · (z0 ·z0−1)
/

(zz0−1)4 ,

µ′(0) = z0 ·z0−1,

µ′′(0) = 2·z0 · (z0 ·z0−1) = 2·z0 ·
(
µ′ (0)

)
.

This gives the first coefficient off by (10) as

f1 = f ′ (0) = p′ (s0) ·σ′ (z0) ·µ′ (0)

= p′ (s0) · 2

(1−z0)2 · (z0 ·z0−1) .

With z0 = σ(s0) = s0−1
s0+1 = 1− 2

s0+1 we find

f1 = −2 p′ (s0) ·ℜ(s0) · s0 +1

s0 +1
. (12)

With s0 inside the right half-plane the absolute value of this coefficient is:

| f1|=
∣∣p′ (s0)

∣∣ ·2·ℜ(s0)

Computing the derivatives from (10), this translates (just as in [3]) to the situation of a
multiple zero as: ∣∣ fq∣∣=

∣∣∣p(q) (s0)/q!
∣∣∣ · |2·ℜ(s0) |q

Suppose now finally the case of a simple zero. The computation off2 from (11) is
slightly more tedious. We have

p′′ (σ(µ(z))) ·
(
σ′ (µ(z)) ·µ′ (z)

)2
|z=0

= p′′ (s0) ·
(
−2·ℜ(s0) · s0 +1

s0 +1

)2

.

The term
[
σ′′ (µ(z)) · (µ′ (z))2 + σ′ (µ(z)) ·µ′′ (z)

]
evaluated at zero gives
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σ′′ (µ(0)) ·
(
µ′ (0)

)2 + σ′ (µ(0)) ·µ′′ (0)

= σ′ (µ(0)) ·
(
µ′ (0)

)[ 2·µ′ (0)
1−µ(0)

+2z0

]
.

The term
[

2·µ′(0)
1−µ(0) +2z0

]
whereµ′ (0) = z0 ·z0−1, µ(0) = z0 gives

2· (z0 ·z0−1)
1−z0

+2·z0
(1−z0)
1−z0

=−2· (z0−1)
z0−1

= 2· s0 +1

s0 +1
.

The second coefficientf2 = f ′′ (0)/2 finally computed as

f2 = 2

(
s0 +1

s0 +1

)2(
p′′(s0)(ℜs0)2 + p′(s0)ℜs0

)
. (13)

Hence, the lower bound for simple zeros is obtained from (9) with (12) and (13).�

Remark. The Corollary may be strengthened by further coefficient computations. We
may have given more formulas to state a further improved estimate for multiple zeros
as well. The way to proceed is strictly as above.

5 Examples

Example 1.
In [3] the following transfer function was considered

p(s) =
(s−2)(s+1)

2s3 +s2 +3s+1
. (14)

There is no pole in the closed right half plane and a single zeros0 with Res0 > 0, thus
s0 = 2,m= 1. The derivative ofp(z) is

p′ (z) =
−2·s4 +4·s3 +16·s2 +6s+5

(2·s3 +s2 +3·s+1)2

hencep′ (s0) = p′ (2) = 1/9.

Blondel and Bertilsson derived the upper bound for the modulus of acomplexgain as
(2), namely

9· (m+1)q!
|2Re(s0)|q |pq (s0)|

,

which evaluates to
9·2

4·1/9
= 40.5.

From the first bound in Theorem 2 we find the upper boundR to be
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2
f1

=
2

|2·Re(s0)| · |p′ (s0)|
=

9
2

= 4.5.

Willing to use more information from the transfer function we calculate firstp′′ (s0) =
−44
243 , and then

f2 = f ′′ (0)/2 = 2

(
3
3

)2(
p′′(2)22− p′(2)

2
4

)
= 2(

−44
243
·4+

2
9

) =
−244
243

.

This gives by the second estimate of our Theorem 2 a lower bound of the maximal real
valueκ via

| f1
2κ
|2 + | f2

2κ
|2≤ 1 as

10
243

√
178≤ κ.

Taking the inverse gives the second controller bound of Corollary 1. Hence we find
that the upper boundR to real proportional gain is no greater than

1.8213.

What is the actual boundR for a constant real controllerk? Computing the root loci we
find that the small gain controllers are confined to the interval

[−0.1625,0.5].

Thus, we must compare the new upper bounds 4.5 and to 0.1625 which shows that
further improvement of the latter bound is limited to a factor smaller than 13.95.

Example 2.
Consider the transfer function

p(s) =
s2−10s+37.25

s3 +2.5s2 +3s+1

=
(s− (5+3.5· I))(s− (5−3.5· I))

s3 +2.5s2 +3s+1
.

Evaluating the first and second derivative at the zero 5+ 3.5 · I yields

p′(s0) = 0.022013−0.000754· I ,
p′′(s0) = −0.016527+0.004033· I .

The coefficientsf1 and f2 are computed as

f1 =−0.220128+0.007537 f2 = 0.254099−0.815687· I .

This yields as a first order upper bound for proportional control

R= 9.080,

while taking the improved upper bound yields

R= 2.267.
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6 Conclusion

Using complex analysis, general upper bounds for real proportional controllers have
been derived. The new bound improves the known one by a factor of at least 9, and
is in contrast not dependent on the number of roots. A systematic way to improve the
new bound has been outlined. The general bound may not be improved by any constant
factor smaller 1/28, while the first of the improved bounds may not be lowered by a
factor smaller than 1/14.

Using the methods introduced here and in [2] we will show how to derive perturbation
bounds for fixed rational controller structures in subsequent work [1].
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