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Abstract: We introduce a new tool for the analysis of robust stability and
simultaneous stabilizability questions. By a single approach we derive limits for
controller parameters in low-order synthesis schemes as well as constraints for
unit interpolation problems. Especially, we answer a question by Vijay V. Patel
on stabilization of three special systems.
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1. MOTIVATION

Schwarz’ Lemma in combination with the max-
imum principle provided Schur, Nevanlinna and
Pick with the means to solve the problem of ana-
lytic rational interpolation inside the unit disc. Af-
ter the purely mathematical problem was solved,
engineering applications arose from problems of
filter design, broadband matching, control sys-
tem synthesis, see, e.g., (Delsarte et al. 1981). It
is therefore of interest to pursue generalizations
of Schwarz’ Lemma to the point of applicability
in the area of robust control. We will focus on
subordination as developed by Littlewood from
Lindelöf’s abstraction of Schwarz’ result.

We will present facts from Littlewood’s theory of
subordination (for ref., see also (Nehari 1952))
which will enable us to treat rational systems
with unknown coefficients varying over bounded
intervals. We derive limits for the absolute value
as well as the interval range. In connection with
the problem of simultaneous stabilization of three
systems, we answer a question by Vijay V. Patel
on stabilization of three special systems. The
analysis opens the possibility to derive constraints
for unit interpolation inside the unit disc.

2. A TOOL OF COMPLEX ANALYSIS

It is well-known that the coefficients of a polyno-
mial

p(z) =
n∑

i=0

aiz
i = an

n∏
j=1

(z − ζj)

may be expressed via the elementary symmetric
functions Si. We have ai/an = (−1)n−iSn−i(ζ1, ζ2, . . . , ζn),
where

S0(z1, . . . , zn) ≡ 1, Sν :=
∑

1≤j1<j2<...jν≤n

zj1 . . . zjv.

Denote the unit disc in the following by D. Let
us consider the case of a polynomial with all roots
inside D, i.e. a Schur stable polynomial. Obviously,

|ai/an| = |Si(ζ1, ζ2, . . . , ζn)| ≤
(

n

i

)
. (1)

Hence, we conclude that if the Schur-stable poly-
nomial is monic, i.e. an = 1, the polynomial is
bounded on D by 2n. This does not reflect the
full geometrical information available. Consider
the reciprocal polynomial

p∗(z) =
n∑

i=0

aiz
n−i = znp(1/z) = an

n∏
j=1

(1−z ·ζj)



with all roots outside the unit disc. Dieudonné
(Dieudonné 1934) considered the geometrical mean
of (1−z ·ζ1), . . . , (1−z ·ζn) to find that this defines
a holomorphic function φ(·) as in the following
theorem.

Theorem 1. Given a polynomial P (z) with no
roots in the unit circle and P (0) = 1. Then

P (z) = (1− φ(z))n

for a holomorphic function φ(z) on D with φ(0) =
0 and φ(D) ⊂ D.

The above representation offers the possibility to
study the polynomial P (z) as a function which
cannot take values outside the range of (1 −
z)n. Derive bounds to φ(z) using the following
fundamental result.

Lemma 2. (Schwarz) Let f be a holomorphic
function on the unit disc bounded there in mod-
ulus by unity. Moreover, let f(0) = 0. Then
|f(z)| ≤ |z|.

We find the following upper and lower bounds for
the range of P (z) based on the representation in
Th. 1.

Corollary 3. Given a polynomial P (z) with no
roots in the unit circle and P (0) = 1. For z ∈ D
with |z| = r we have that

(1− r)n ≤ |P (z)| ≤ (1 + r)n. (2)

The correspondence of functions as in Theorem
1 was studied systematically by Littlewood, cf.
(Littlewood 1944), who coined the term subordi-
nation.

Definition 1. Let f̂ be a meromorphic function in
D, and ω any function satisfying the prerequisites
of Schwarz’ Lemma as stated above. If f is any
function of the form

f(z) = f̂(ω(z))

we shall say that f is subordinate to f̂ .

For a schlicht (i.e. univalent) function f̂ this
means that f takes all values inside the simply-
connected domain f̂(D). Littlewood used the su-
perordinate functions explicitly (Littlewood 1944)
to study the following function properties of f
subordinate to f̂ . I. Suppose complete knowledge
of the superordinate function f̂ is available.

• The image of D under f lies inside the alge-
braic surface f̂(D). Especially, if f̂ is regular
in |z| = r we obtain upper bounds for f in
|z| = r.

• Assuming that f̂ is regular at z = 0, we
obtain upper bounds for the coefficients of
f(z) =

∑
aiz

i, especially for the expressions
|ai|,

∑k
i=0|ai|2,

∑∞
0 |ai|2r2n.

II. Moreover, we might use this principle in the
opposite direction. Assuming subordination of f
to a schlicht f̂ , the above implications would
follow. If we know from a property of f or the
class it belongs to, that this is impossible, we may
conclude that f(D) does not lie inside f̂(D). This
is to say, that f must take values which f̂ does not.

One important example for I. is the following clas-
sical result((Littlewood 1944) Th.212, Th.215).

Theorem 4. Suppose f(z) =
∑∞

i=0 aiz
i is regular

at z = 0 and subordinate to the regular function
f̂(z) =

∑∞
i=0 biz

i. Then

|a1| ≤ |b1|, |a2| ≤ max{|b1|, |b2|},
k∑

i=1

|ai|2 ≤
k∑

i=1

|bi|2.

Geometrical properties of f̂(D) have impact on
the subordinate function f(·).

Theorem 5. Assum. and Notation as above. If
f̂(z) is convex on D, i.e. f̂ univalent and f̂(D)
convex, then

|ai| ≤ |b1|.

An important example in direction II. is the
following result (Littlewood 1944), Th. 217.

Theorem 6. Let f and F be meromorphic func-
tions with F (0) = f(0) = 0 and F ′(0) = f ′(0) =
1. Let 0 < t ≤ 1, 0 < ρ ≤ 1. Then

f(ρz) is not subordinate to tF (ρz),

except in the case t = 1, f(z) ≡ F (z).

Littlewood (Littlewood 1944) calls the

systematic application of these ideas
in both directions (I and II) [ . . . ] the
”principle of subordination”.

3. LIMITING POLYNOMIAL COEFFICIENTS

Bhattacharyya et al. have developed complete
parametrization of PID- as well as first-order
controllers for discrete-time rational systems (Xu
et al. 2001), (Tantaris, R.N.; Keel, L.H.; Bhat-
tacharyya, S.P. 2003). From the parametrization,
we might choose the optimal controller regarding



performance, robustness and especially fragility.
The complete set of three parameters describing
the controllers is obtained from the solution of a
two-variables LP-problem accompanying a sweep
for the third parameter over the real line. The
extension of their method to interval plants ne-
cessitates a two parameter-sweep (Ho et al. 1998).
We suggest to limit the possible range of param-
eters using the above results as in the following
estimates.

Example:
Consider the stabilization of the system (from
(Tantaris, R.N.; Keel, L.H.; Bhattacharyya, S.P.
2003))

24z5 + 72z4 + 19z3 + 81z2 + 84z + 95
76z6 + 42z5 + 56z4 + 59z3 + 24z2 + z + 15

=
N(z)
D(z)

,

with generic PID-controller: KP + KI · T z
z−1 +

KD

T
z−1

z reparametrized as

K2z
2 + K1z + K0

z(z − 1)
. (3)

Compute the characteristic polynomial P =
N(z)(K2z

2 + K1z + K0) + D(z)(z(z − 1)), of the
closed feedback loop with plant Num(z)/Denom(z)
and discrete PID-controller, and normalize to the
monic P1

P1(z) =
5K0

4
1 + (95K1 + 84K0 − 15)/76 · z + . . .

+
72K2 + 24K1 + 14

76
z6 +

24K2 − 34
76

z7 + z8,

Estimates (1) from Viète’s formulas give −4/5 ≤
K0 ≤ 4/5, −6.95 ≤ K1 ≤ 7.27 and −29.66 ≤
K2 ≤ 29.08. Considering the normalized recipro-
cal polynomial P ∗

1 (z) = z8 · P1(1/z) we obtain
from Th. 1 together with Th.4 the improvement
−23.92 ≤ K2 ≤ 26.75. If we evaluate P ∗

1 (z)
for z = 1/100 we may improve this estimate to
−22.32 ≤ K2 ≤ 26.75. This yields an improve-
ment of at least 15 percent over the estimates
from Viète’s formulas, and hence implies a propor-
tionally lighter work-load of function evaluations
and LP-solving in the parametrization schemes by
Bhattacharyya et al.

Considering the proposed two parameter-sweep
which implies checking stability of interval poly-
nomials for each parameter value, it might be
useful to determine upper bounds on the interval
coefficient range. Consider an interval family of
real, Schur-stable polynomials, i.e., the collection
of p (z) =

∑n
j=0 ajz

j , where aj ∈
[
a−j , a+

j

]
⊂ R.

Assume a−n > 0 (so that the family is degree-
invariant). Suppose every element of the family
is Schur-stable. Thus, every family member p (z)
has all its roots inside the unit disc. Equivalently,
every p∗ (z) :=

∑n
j=0 an−jz

j = znp (1/z) has all

zeros outside the closed unit disc D. Hence, Schur-
stability of the family is equivalent to the following
condition for all an−j ∈

[
a−n−j , a

+
n−j

]
:

∀z ∈ D : p∗ (z) =
n∑

j=0

an−jz
j 6= 0. (4)

Consider the special family member

p− (z) := a−n +
n∑

j=1

a−n−jz
j .

Define, for all k, dk := a+
n−k − a−n−k (≥ 0).

Hence, for z 6= 0, dk > 0 the rational function
p− (z)/(dk · zk) takes no values in [−1, 0] , as oth-
erwise p−(z) + τ · dk · zk = 0 for some τ ∈ [0, 1],
contradicting (4).

Switching the role of numerator and denominator,
adding unity yields

fk (z) := 1 +
dk · zk

p− (z)
6∈ (−∞, 0] ∀z : |z| < 1,

Fk (z) :=
√

fk 6∈ {z ∈ C : <z ≤ 0} (5)

The above function is holomorphic inside D as the
denominator is free from zeros according to (4).

As (1 + z)/(1− z) maps the unit disc conformally
to the right halfplane, the function Fk(z) = 1 +
1
2

dkzk

2a−n
+ . . . is subordinate to

λ(z) :=
1 + z

1− z
= 1 + 2

∞∑
1

zi. (6)

Using the theory of subordination, esp. Theorem
5 we re-derive the result in (Batra 2004).

Theorem 7. Given n+1 real intervals
[
a−j , a+

j

]
, j =

0, . . . n, where a−n > 0. Suppose every polynomial
p (z) =

∑n
j=0 ajz

j with coefficients aj ∈
[
a−j , a+

j

]
is Schur-stable. Then the following holds true.∣∣a+

l − a−l
∣∣ ≤ 4 ·

∣∣a−n ∣∣ , l = 0, · · · , n− 1.

While the above result allows to limit the interval
coefficient range, we might vary our construction
to obtain limits for the volume of parameter boxes
describing stabilizing controllers.

Example (continued):
Write N(z)/D(z) as

∑5
j=0 ajz

j/
∑6

k=0 bkzk.

Consider the reciprocal P ∗ of the characteris-
tic polynomial of the closed feedback-loop with
generic PID (3), and sort the terms dependendent
on Kj :



P ∗(z) = z

5∑
j=0

zjK2a5−j + z2
5∑

j=0

zjK1a5−j

+ z3
5∑

j=0

zjK0a5−j +
∑

. . . .

We may vary our construction, and define the
functions√

1 +
d(Kk)·z2−k(a5z + a4z2 + . . .)

P ∗(z)
, k = 0, 1, 2.

These are subordinate to the mapping λ as in (6),
and as above we obtain a coefficient box for fixed
extra parameters:

max{d(K0), d(K1), d(K2)} ≤ 4
b6

a5

Plant= 12.666.

The above computation shows more generally
that in controller space the largest coefficient
ball of stabilizing PID controllers is bounded
in absolute terms which delimits specifications
regarding fragility. We have the following new
result.

Theorem 8. Given a strictly proper discrete-time

plant
∑n−1

0
akzk∑n

0
bkzk

stabilized in closed-loop by a

PID-controller . The l2-norm of the largest sta-
bilizing PID-coefficient ball is no larger than

4 ·
√

3bn/an−1.

4. SIMULTANEOUSLY STABILIZING THREE
SYSTEMS

In 1994, Blondel, Gevers, Mortini and Rupp
(Blondel et al. 1994) considered stabilizability of
the following three systems:

P0 =
2
17

s− 1
s + 1

, P1 =
(s− 1)2

(9s− 8)(s + 1)
, P2 = 0.(7)

The co-prime factorization approach has led V.V.
Patel (Patel 1999) to the solution of a more gen-
eral problem. Consider the three linear systems
with parameter δ:

P0 = 2δ
s− 1
s + 1

, P2 = 0, (8)

P1 =
2δ(s− 1)2

((1 + δ) · s− (1− δ)) · (s + 1)
.

We recover the original systems (7) if δ = 1
17 .

Patel showed in (Patel 1999) that for all complex
δ 6= 0 with |δ| < 1

16 , the three systems (8) are
not simultaneously stabilizable by a single time-
invariant controller. Thus, especially the question

from (Blondel et al. 1994) as stated above has
been answered. In turn, Patel put the following
question still unanswered: May the three systems
given by (8) be simultaneously stabilized for δ =
1/16?

We will show by the theory of subordination
that this problem is truely transcendental, and
no finite-precision or finite-dimensional controller
exists.

The domain of stability is the left half-plane. From
(8) we find that with |δ| < 1, δ 6= 0, the plant P0 is
stable, P1 is unstable, and the difference is given
as

P1 − P0 =
−2 · δ2 · (s− 1)

(1 + δ) · s− (1− δ)
.

One co-prime factorization P1 − P0 = N/D is
given by(

−2 · δ · (s− 1)
(s + 1)

)
/

(
(1 + δ) · s− (1− δ)

δ(s + 1)

)
.(9)

By this choice we have N = −P0.

With R = (U −D)/N , a stabilizing controller (if
it exists) would be given as

C =
R

1−R · P0
=

U −D

N(1 + U −D)
. (10)

The non-minimum phase zero of N , i.e. the zero
outside the domain of stability is 1. The function
value of D is ( (1+δ)·1−(1−δ)

(1+1)δ ) = 1. The interpola-
tion condition for the unit U is thus given as

U(1) != D(1) = 1. (11)

If C is also simultaneously stabilizing P3 ≡ 0
considering the Bezout relation of the co-prime
factors we find that C must be stable. Combining
this with the interpolation condition (11) and
analysing (10) we find that 1 + U − D must be
a unit as well as U . The explicit expression for D
from (9) yields

1 + U −D = U +
δ · (s + 1)− (1 + δ) · s + (1− δ)

δ(s + 1)

= U − 1
δ

s− 1
s + 1

. (12)

As the units constitute a group, we may assume
U(s) to be of the form 1/U1, and multiply the
expression (12) by the unit δU1. The result is
again a unit. We find that to solve the problem
of simultaneous stabilization of the three plants
we will have to produce two units

δ − s− 1
s + 1

U1(s) and U1(s) with U1(1) = 1.(13)



4.1 Circles of values and unit existence

Suppose we transfer from the time-domain <s < 0
to the frequency domain. A function is a unit
function on the closed unit circle D if and only
if it has no zeros and poles there. Thus, the
unit interpolation problem in the half-plane (13)
translates as follows.

Find a holomorphic function U(z) on D which has
no zeros there such that the same holds true for δ−
zU(z), and moreover the interpolation condition
U(0) = 1 is satisfied.

Obviously, this condition may not be satisfied
whenever δ is in the range of values of zU(z) on
D. Hence, the function zU(z) must omit δ. The
following result (cf. (Littlewood 1944)) on covered
discs is useful.

Theorem 9. (Hurwitz-Carathéodory) Given a func-
tion f(z) holomorphic on D with the following
properties:

f(z̃) = 0, z̃ ∈ D ⇔ z̃ = 0, and f ′(0) = 1.

Then the function takes every value of the open
disc centered at the origin with radius 1

16 . This
estimate is sharp.

Suppose U(z) solves our transformed problem.
Put

f(z) := z · U(z).

Obviously, f(0) = 0, and f(z) has no other zeros
inside D as U(z) is supposed to be a unit. Differ-
entiating, we have f ′(z) = U(z) + z · U ′(z), and
hence f ′(0) = U(0) = 1 from the interpolation
condition. Thus, by Theorem 9 the values of f(z)
cover the open disc around the origin of radius
1/16. Therefore, δ − f(z) = δ − z · U(z) will have
a zero for every δ with |δ| < 1/16, and can be
no unit function. This is Patel’s solution to the
problem posed by Blondel et al. for the systems
(7).

We turn to the proof of Theorem 9 as given in
(Littlewood 1944) (for another proof, see (Nehari
1952)). The proof demonstrates subordination of
f(z) to the elliptic modular function, and hence
additionally allows to give a negative answer to
Patel’s question for the domain of rational con-
trollers.

Suppose a function F (z) omits the values 0 and β,
i.e. for no finite value of z it holds that F (z) = 0
or F (z) = β. Then F (z)/β omits 0 and 1. The
conformal mapping function of the halfplane to
C \ {0, 1} is well-known, it is the elliptic modular
function (for properties and formulas, see, e.g.,

(Nehari 1952)). Denote this function by λ = k2.
This function has a product expansion and a func-
tional equation which employed to the composite
mapping from the unit circle D to the upper-
halfplane (via 1/πi · log z) to C (via λ) yield

Q(z) := λ(1/πi · log z) = 16z ·
∞∏

n=1

(
1 + z2n

1 + z2n−1
)8,

= 16 · [z − 8z2 + 44z3 − 192z4 + 718z5 . . .].

The essential property of λ implies that Q(z) 6= 0
whenever 0 < |z| < 1. It may be shown that Q(z)
is regular at the origin and attins the value zero.

From the theory of subordination, esp. Th. 4, we
find putting for F (z) the function f(z) = zU(z)
that

16 ≥ |F ′(0)|
|β|

=
|f ′(0)|
|β|

. (14)

The normalization condition f ′(0) = U(0) = 1
leads to the constant 1/16 of Theorem 9 above.
The higher coefficients of Q(z) yield constraints
for the expansion of U(z).

Equality may hold in (14) just for the elliptic mod-
ular function by the principle of subordination,
esp. Th. 6. In control terms this means that sta-
bilization of the three systems (8) with δ = 1/16
is possible only with the precise infinite controller
determined by the inverse of the elliptic modular
function. We may hence answer Patel’s question
in the negative if a controller has to be realized
with limited precision or finitely many elements.
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