
ON COEFFICIENT DIAMETERS OF REAL
SCHUR-STABLE INTERVAL POLYNOMIALS

Prashant Batra ∗

∗ Technical University Hamburg-Harburg, Inst. f.
Distributed Sytems (4-11), 21071 Hamburg, Germany

Abstract: A new necessary, sharp condition for Schur-stability of real interval
polynomials is established here. Moreover, a way to study perturbation effects
on the coefficient range is outlined. The results may be used in a preprocessing
rejection scheme when testing for robust Schur-stability.
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1. INTRODUCTION

Given a real, rational transfer function P (z) =
p1(z)
p2(z) it is of practical importance to constrain
the positions of zeros and poles to a domain of
stability. If the function considered is subject to
perturbation, we face the following question: For
which perturbations ε(z) of pi(z) will the zeros of
pi(z) + ε(z) be confined in the preset region?

In this presentation, negative results for struc-
tured perturbations regarding Schur-stability are
exhibited. Especially, the first general upper
bound on the possible perturbation range of an
arbitrary single coefficient is proven. The bound
just depends on the leading coefficient. It is shown
to be sharp.

After briefly reviewing known results on real ro-
bust Schur-stability, the image of a rational func-
tion derived from the robustly stable polynomial
is considered. The resulting image is mapped to
the unit disc, and known coefficient bounds are
applied to the resulting function.

2. KNOWN STABILITY CRITERIA

One obvious necessary condition for Schur-stability
is that the gravity center of the roots must be

inside the unit disc. Little seems to has been pub-
lished on necessary conditions for robust Schur-
stability, with the notable exception of (Blondel
1995).

A sufficient condition for all roots to remain inside
the unit disc is necessarily dependent on all coeffi-
cients. This may be inferred from Viète’s formula
for the polynomial’s coefficients. Numerous condi-
tions may be found for example in (Marden 1966)
or (Henrici 1974). For robust stability, well-known
sufficient conditions have been given by Bose, Jury
and Zeheb (Bose et al. 1986) and Soh, Berger
and Dabke (Soh et al. 1985). While the approach
of the former gives small, pairwise coupled, real
intervals (which leave associated quadratic forms
positive), the latter apply optimization principles
to exhibit a hypersphere in complex coefficient
space. The exact (symmetric) perturbation bound
for real robust, Schur-stable polynomials has been
expressed by Hinrichsen and Pritchard (cf. (Hin-
richsen and Pritchard 1992), Cor. 8.2 or (Hinrich-
sen and Pritchard 1989), Cor. 4.4) as follows:

Given a real stable polynomial p(z) =
∑n
j=0 ajz

j ∈
R[z] and a (real) coefficient perturbation-structure
c(z) =

∑n
j=0 cjz

j ∈ R[z]. Define for z ∈ C

G(z) :=
c(z)
p(z)

=: GR(z) + i ·GI(z),



where GR(z), GI(z) ∈ R(z). The maximal allow-
able bound rR for a single real parameter ρ such
that p(z) +ρ · c(z) remains Schur-stable may then
be computed as

rR = rR(p, c) = min{ 1
|G(z)|

: |z| = 1, GI(z) = 0}.

It seems hard to estimate thereof rR if only the
perturbation of a single coefficient is known and
no information on the other coefficients is given.
Yet carrying out our above outlined program, we
find that the diameter of any coefficient (i.e. the
maximal allowable perturbation) is bounded by a
small universal constant.

3. MEROMORPHIC FUNCTIONS FROM
SCHUR-STABLE POLYNOMIALS

Starting with a stable family it is possible to
construct a function which avoids a continuum
of values. This may be seen to be in perspective
with approaches of Ghosh, Blondel and others
connecting simultaneous stabilization of systems
and avoidance of value sets, as, e.g., in (Ghosh
1988), (Blondel 1994).

Consider an interval family of real polynomials,
i.e. the collection of p (z) =

∑n
j=0 ajz

j , where
aj ∈

[
a−j , a

+
j

]
⊂ R. Assume a−n > 0 (so that the

family is degree-invariant). Suppose every element
of the family is Schur-stable. Thus, every family
member p (z) has all its roots inside the unit
disc. Equivalently, every p∗ (z) :=

∑n
j=0 an−jz

j =
znp

(
1
z

)
has all zeros outside the closed unit disc

D. Hence, Schur-stability of all family members
is equivalent to the following condition for all
an−j ∈

[
a−n−j , a

+
n−j
]
,

∀z ∈ D : p∗ (z) =
n∑
j=0

an−jz
j 6= 0. (1)

Consider now the special family member

p− (z) := a−n +
n∑
j=1

a−n−jz
j .

Define, for all k,

dk := a+
n−k − a

−
n−k (≥ 0).

Hence, for z 6= 0, dk > 0 the rational function
p− (z)/(dk · zk) takes no values in [−1, 0] , as oth-
erwise p−(z) + τ · dk · zk = 0 for some τ ∈ [0, 1],
contradicting (1).

Switching the role of nominator and denominator
yields

fk (z) :=
dk · zk

p− (z)
6∈ (−∞,−1] ∀z : |z| < 1. (2)

The above function is holomorphic inside the
unit circle as the denominator is free from zeros
according to (1). The image of fk(z) is contained
in the slit plane M := C \ (−∞,−1].

Consider now the mapping of the maximal image
domain M to the unit circle. As 1+z

1−z maps the unit
disc conformally onto a halfplane, the function

λ̃(z) := z
(1−z)2 = 1

4

[(
1+z
1−z

)2

− 1
]

maps the unit

disc onto the slit complex plane C \
(
−∞,− 1

4

]
.

Hence,

λ(z) := c0 + 4
(c0 + 1) · z

(1− z)2 (3)

maps the unit disc isomorphically onto the slit
plane M = C \ (−∞,−1] for any non-negative c0.
The mapping is thus invertible. Hence, composi-
tion of λ−1 and fk will yield a mapping of the unit
circle.

Using the definitions (2), (3) given above (with
c0 := fk (0)), define

g (z) := λ−1 (fk (z)) . (4)

If dk > 0, fk (z) omits (−∞,−1] according to
(2), the image of fk is hence contained in C \
(−∞,−1] . Taking now c0 := fk (0), it is obvious
from (2) that c0 ≥ 0, as a−n > 0, dk ≥ 0. As
λ (0) = c0, we have λ−1 (c0) = 0. The image
of fk thus lies inside the domain of definition
of λ−1. Thus, the image of the unit circle by
g(·) = λ−1 (fk (·)) lies inside the unit circle. This
yields altogether

|g (z)| < 1 ∀z ∈ D, (5)

g (0) = λ−1 (fk (0)) = λ−1 (c0) = 0. (6)

4. FUNCTIONS OF BOUNDED MODULUS

Consider now the expansion of λ−1 (z) around
zero, say λ−1 (z) = λ0 + λ1 · z + λ2z

2 + · · · . We
calculate the coefficients by the implicit function
theorem, first of all

λ1 =
1
1!
D(0)
z

(
z

λ (z)− c0

)1

z=0

=
z

λ (z)− c0
|z=0

=
(1− z)2

4 (c0 + 1)

∣∣∣∣z=0 =
1

4 (c0 + 1)
. (7)

Suppose now k ≥ 1. Thus, c0 (= fk(0)) = 0.
Let the power series expansion of the compos-
ite function be given by g(z) = λ−1 (fk (z)) =∑∞
v=0 gvz

v. From



λ−1 (fk (z)) = λ1
zk · dk
p− (z)

+ λ2z
2k

(
dk

p− (z)

)2

+ · · ·

=
∞∑
v=0

gvz
v (8)

it is obvious that g0 = 0 = gi ∀i ≤ k−1. The first
non-vanishing coefficient (dk > 0) is

gk =
1
k!
(
λ−1 (fk (z))

)(k)

z=0

= λ1 ·
dk

a−n
=

1
4 (c0 + 1)

· dk
a−n

=
dk

4 · a−n
. (9)

A well-known inequality of Cauchy’s for the co-
efficients of functions of bounded modulus is the
following (see for example (Henrici 1974)).

Lemma 1. Given a power series g (z) =
∑∞
v=0 gvz

v

analytic in the unit circle D such that |g (z)| < 1
∀z ∈ D. Then

v
√
|gv| ≤ 1 ∀v. (10)

As g(z) is bounded according to (5), the applica-
tion of Cauchy’s estimate to the coefficent com-
puted in (9) yields the following.

Theorem 2. Given n+1 real intervals
[
a−j , a

+
j

]
, j =

0, . . . n, where a−n > 0. Suppose every polynomial
p (z) =

∑n
j=0 ajz

j with coefficients aj ∈
[
a−j , a

+
j

]
is Schur-stable. Then the following holds true.∣∣a+

l − a
−
l

∣∣ ≤ 4 ·
∣∣a−n ∣∣ , l = 0, · · · , n− 1.

Example 1: Consider the well-known example
of Bose and Zeheb (cf. (Barmish 1994) or (Bose
and Zeheb 1986)) for a varying gravity center
q ∈ [−17/8, 17/8]:

p(z; q) = z4 + q · z3 +
3
2
z2 − 1

3
.

The cited authors compute the roots explicitly
to show that p(z,− 17

8 ) and p(z, 17
8 ) are Schur-

stable, while p(z, 0) is not. The Theorem allows
to proceed as follows: The considered interval is
[−17/8, 17/8], the diameter is 4.25, well exceed-
ing 4. According to the Theorem the polynomial
p(z; q) is identified as unstable - without comput-
ing the roots.

Remark: i) Our result was inspired by the work
of Blondel on robust stable polynomials omitting
two values. In (Blondel 1995), a bound connecting
the range of the leading coefficient to the absolute
value of the second coefficient was established.

ii) In (Batra 2003), a preliminary version of the
new bound in Theorem 2 was established for the

second but leading coefficient. A generalization
of the symmetrization/subordination results used
there leads to a dimension-dependent factor (of
maximal n) in the diameter bound (cf. (Batra
2001)). This factor has been avoided here using
the presented new approach.

The diameter bound holds for all real Schur-stable
interval polynomials of arbitrary degree. It may
be asked how conservative this criterion is. In
fact, it may be shown to be sharp. Precisely: The
above uniform diameter bound is sharp at least for
the second coefficient’s diameter,

∣∣a+
n−1 − a

−
n−1

∣∣,
as the following example shows.

Example 2: Consider the family of polynomials
of degree n ≥ 2, given as the real polynomials
k(z) = (1 + ε) · zn+ q · zn−1 + zn−2, where q varies
in the interval [−2, 2] and ε is positive. The family
is Schur-stable, as the non-zero roots belong to the
quadratic (1+ε)·z2+q ·z+1 and lie inside the unit
circle. Normalizing the family to be monic, the
second coefficient’s diameter becomes 4/(1 + ε).
Thus, the constant 4 in Theorem 2 is best possible
(Communicated by S.M. Rump).

Remark: The coefficient bound (10) may be
applied to higher coefficients of the expansion
(8) as well. This will yield bounds depending
on coefficients and diameters as information is
available. Consider the following sample.

Example 1 (cont’d): With c0 = 0, compute λ2

via the implicit function theorem to find λ2 = − 1
8 .

The second coefficient of

g(z) := λ−1 (fk (z)) =
∞∑
v=0

gvz
v

is thus generally given by

g2 = −1
4
an−1 · d
a2
n

− 1
8
d2

a2
n

= −1
4
d

an
(
an−1

an
+

1
2
d

an
).

The use of Cauchy’s estimate |g2| ≤ 1 allows to
obtain limits whenever either the diameter d of
an−1 or the absolute value |an−1| are preassigned.
Supposing, for example, the diameter to be the
possible maximum, i.e. d = 4 · an = 4, (an = 1)
this shows the allowable coefficient range to be
at most: −3 ≤ an−1 ≤ −1. The range for an−1

limits in turn the range for an−2. This may be
turned into an algorithmic adaptive scheme for
preprocessing polynomial families.

5. CONCLUSION

Using complex analysis, a sharp, constant bound
for the coefficient diameter of real Schur-stable
interval polynomials has been established. The
bound holds uniformly for all polynomials and all



coefficients. The result is based on mapping and
avoidance properties of rational functions related
to the family. It may be used as a check criterion
for stability given only limited information, and
for the explicit study of perturbation effects on
the allowable coefficient range.
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