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A concept to automate mesh generation for hydrodynamic finite element simulations is 
presented within a general framework for quality assessment, facing challenges for 
floodplain modeling based on high-resolution LiDAR measurements. 

INTRODUCTION 

Exploiting high-resolution measurements from Laser induced Detection and Ranging 
(LiDAR) for floodplain modeling is a current challenge for research in hydrodynamics. 
This challenge aims to improve efficiency in finite element mesh generation and 
consistency of simulations results. This concept reduces huge LiDAR data sets based on 
slope classification, routinely deriving case specific, adaptive surface meshes for 
hydrodynamic simulations and provides a mean for fast data exploitation. Applications of 
computational fluid dynamics commonly recognize, that mesh resolution is the only 
unbounded parameter value where specific boundaries and error bands have not yet been 
considered up to now [8]. Providing this model concept seeks stimulation for further 
efforts in that particular field of hydrodynamic mesh generation. 

ACCURACY OF FLOODPLAIN MODELING BASED ON LIDAR DATA 

Accuracy standards for LiDAR data, given by the US Federal Emergency Management 
Agency (FEMA) for floodplain mapping in accordance with the US National Standard 
for Spatial Data Accuracy (NSSDA) for digital products, claim that an accurate DEM 
should have a maximum Root Mean Square Error (RMSE) of 15 cm [7]. The RMSE is 
the square root of the average of a set of squared differences between LiDAR coordinate 
values and coordinate values from an independent source of higher accuracy for identical 
points. Moreover, 95 percent of any sufficiently large sample should be less than 1.96 
times the RMSE, holding for normally distributed differences averaging zero. Thus, a 
RMSE of 15 cm is referred to as ‘30-centimeter accuracy at the 95-percent confidence 
level’. The vertical accuracy of any DEM is defined as 1.96 times the RMSE of linearly 
interpolated elevations in the DEM. Mean values exceeding ± 2 cm or values of the 
coefficient of skew outside ± 0.5 cm may indicate systematic errors. Contractors must 
test a least 20 test points for each major vegetation category and to show they accomplish 

1 



2 

� �1 2.326 1
15sample

n
RMSE

n
� � �

�

n
 (1) 

where n is the number of test points in the sample and RMSEsample is determined in cm-
units. Random errors magnitudes in LiDAR data accomplish ± 20 cm on flat paved 
terrains, increasing to ± 200 cm on hilly terrain with grass and scrubs [10]. 

MODEL CONCEPT 

This model concept handles entire high-resolution data sets, e.g. riverbeds and 
floodplains. Realized as modular system it currently finds its first applications, aiming to 
determine bounds for hydrodynamic mesh generation. It supplies local adaptive mesh 
density while representing important structures and holding geometric requirements for 
finite element simulations. 

MODEL APPROACH 

The most effective terrain discretization uses the less points of the original data set for a 
finite element mesh, provides suitable numerical performance and appropriate simulation 
results. This ultimate representation cannot be found a priori, but is assessable by gradual 
abstraction or refinement of the initial mesh and revision of their inductive manipulation 
on the hydrodynamics via this model concept. A models value should be evaluated via its 
capacity to reproduce outflow hydrographs, flood extents, water depths and velocities. A 
models accuracy reflects upon the accumulation of weighted errors in the discretization 
of the physical terrain, its roughness inducing friction losses and turbulence. Focusing 
merely on terrain representation, this paper suggests an error bound � for the domain �, 
depending on the accuracy of the LiDAR data set, i.e. its RMSE, and the ‘grade of 
abstraction for the representation’. The model concept uses a global, terrain specific scale 
of detail �  for representation of terrain and its flow relevant features. This scale must 
avoid disparities, requiring compensation in the model calibration process. Numerical 
costs can be optimized via the local maximum tolerance factor ��, representing important 
features within the bound of , such that for each vertice of the finite element mesh �

� � RMSE �� � � � � �  (2) 
where generally � , except for break line locations where �  if � . Random 
fractions of LiDAR data suite to determine the impact of � . A Lower bound on 
residuals serves for local refinement and higher for direct inclusion of measurements to 
the TIN. The last strategy is sensitive towards random errors in LiDAR data. Both 
strategies increase the mesh density. 
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MODEL STRUCTURE 

The model structure essentially consists of an initial surface grid, its classification into a 
breakpoint matrix and their concatenation to a set of polygonal break line vectors. The  
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Figure 1. Gridding LiDAR data to derive break lines, being represented in a TIN. 
 
last structure serves as boundary condition for a final surface mesh. Final surface meshes 
for hydrodynamics on floodplains are derived by a Delaunay refinement, i.e. the final 
mesh is an irregular triangular network (TIN). This model structure including break line 
representation is beyond similar notions for meshing scattered high-resolution 
bathymetric data sets based on B-Spline surfaces, representing topography based on a 
regular grid of de Boor points [2]. 

BREAKPOINT CLASSIFICATION 

Recognizing terrain slope as governing factor for floodplain modeling, LiDAR data 
requires a surface representation for breakpoint localization. A high-resolution grid 
surface is considered as favorable choice, seeking simplicity in data ruling for the 
concatenation of breakpoints to break lines. Figure 1 shows that surface attributes are 
reflected as 2D matrices in the grid representation. The terrain specific scale of detail for 
breakpoint localization designates half the chosen grid resolution. Their vertical accuracy 
relates to the interpolation method during grid generation. Linear interpolation induces a 
vague surface smoothing and contributes to partly eliminate the inherent disparity in 
LiDAR measurements. Two alternate concepts are feasible to determine breakpoints for 
Grid-DTMs: 1st order derivative breakpoint localization, ‘slope methods’, and 2nd order 
derivative breakpoint localization, ‘change of slope methods’. 

SLOPE METHODS 

Slope methods express the first order derivative for the grid elevation matrix. A review of 
various assessed weighting concepts using a 3x3 kernel to determine slope in Grid-DTMs 
is given in Table 1. Applying a threshold for a critical slope Scrit. on the floodplains, the 
boundaries of flow relevant structures or areas are extractable via a thinning procedure. A 
suitable thinning discards breakpoint being completely surrounded by other breakpoints 
(e.g. an interior point on a hill shade). Final achievement is a slope matrix and its thinned 
binary classification matrix. 
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Table 1. Feasible methods for slope assessment in Grid-DTMs. 
 Method, Authors Slope-Formulas GIS-Appliance Ref. 
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2nd ORDER 
derivative: 
‘change of 

slope’ 

Laplacian of 
Gaussian (LoG), 
Marr & Hildreth 

(1980) 
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With the grids cell dimension d, the four directions e, w, n and s, the distance from z9 to 
its neighboring grid cells Lc (either d or 2d ) and the standard deviation � relating to the 
size of the Gaussian kernel and r=x²+y². 

CHANGE OF SLOPE METHODS 

Second order derivative edge detection focuses on intensity changes in image analysis or 
high-resolution grid terrain surveys. The use of the Laplacian to convolve the surface 
derives a corresponding zero–cross matrix, which determines edge locations in the 
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second derivative [9]. The edge Laplacian G(x,y) of a continuous, grid elevation matrix 
F(x,y) is defined by 

� � � ��2,G x y F x y� �� �,  (3) 
with the Laplacian giving the sum of both second derivative spatial directions 
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Zero crossings of the edge Laplacian G(x,y) indicate the presence of edges. G(x,y) is zero 
if F(x,y) is constant or changing linearly in amplitude. If the rate of change is more than 
linear, G(x,y) exhibits a sign change at the point of inflection of F(x,y). The negative sign 
in the definition of the edge Laplacian causes a positive slope for an edge whose 
amplitude increases from left to right or bottom to top within the grid. The general form 
of the convolution operation expresses Eq. (3) as 

� � � � �, ,G x y F x y H x y� �  (5) 
Convolution masks H are sensitive to noise. Gaussian smoothing of F(x,y) before 
applying the Laplacian reduces high frequency noise components prior to differentiation 
and regularizes the derivative computation. This method is named the Laplacian of 
Gaussian (LoG). Its analytic expression of this operation is given in Table 1. Pratt gives 
the gain-normalized expression for a separable eight-neighbor notation [12]: 
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The LoG method provides a binary classification matrix based on a sensitivity threshold, 
analogous to the slope method. 2nd order edge detection suffers from the interpretation of 
the LoG-Response. Errors occur due to missing valid edge points, edge point localization 
failures and misclassification due to noisy raw data. A similar notion to detect VIP points 
was developed by Chen et al. [5]. 

COMPARISON 

Local quality assessments sets indicate, that the LoG-method is less suitable weighted 
against the first order derivative slope methods. Its focus on intensity changes tends to 
access points referring to random errors in the LiDAR measurements. Its access to break 
lines can remain incomplete. So far experienced within this model concept, most 
appropriate breakpoint sets for further concatenation to break lines are derived with the 
One-Over-Distance method together with an appropriate terrain specific Scrit. for thinning. 

BREAKLINE DELINEATION 

Automated delineation of break lines from depicted breakpoint matrices involves a 
framework of following conventions: Only breakpoints are connected. Concatenation 
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candidates are grid-neighboring breakpoints. Slope in between break line segments varies 
continuously and less than Scrit. 

These conventions derive contiguous break lines, avoid interpretations due to gaps in 
break lines and prevent inclusions of unrealistic terrain steps. Following priority queue 
suites to derive breakpoint concatenations with a dynamic 3x3 kernel processing the 
breakpoint matrix: Breakpoints opening new break lines initialize n paths directed 
towards their n neighboring candidates. Except for breakpoints opening new break lines, 
breakpoints cannot be referred to more than one break line. Considering break line 
courses during concatenation, suitable candidates do not exceed its current trend for more 
than ± 90°. In shallow areas such as floodplains or deltas, the most appropriate candidate 
amongst others, fulfilling these priorities, returns the concatenation with the least slope, 
whereas in terrains with considerable terrain slope, the most appropriate candidate returns 
the least change of slope for its break line. Situations raising uncertain concatenation 
situations despite these priorities are overcome, enlarging the kernel to 7x7 cells, using 
stochastic determinations for break line evolution or strictly path-evolution related rules. 

Line simplification requires the accuracy bound �. and is a worthwhile attempt 
reducing finite element mesh densities, applying purely statistical thinning, the Douglas-
Peucker method or cubic polynomial splining, suggested by Brüggelmann [3]. 

DELAUNAY REFINEMENT 

The model concept uses Delaunay refinements for adaptive hydrodynamic floodplain 
meshing and represents break line as Planar Straight Line Graphs (PSLGs), being a set of 
vertices and segments [15]. This conforming triangulation applies constraints while using 
the Delaunay criterion to govern the concatenations of the node set. It requires that the 
circumcircle of a triangle encloses no other vertex of the triangulation. Initializing a 
triangulation based on break lines and the domain boundary, additional Steiner points are 
introduced while meshing the floodplains to fulfill the constraints as well as the Delaunay 
criterion. A minimum-angle-bound prevents ill-conditioned equation systems within the 
finite element method [4] and implicitly prevents large angles, implying errors in the 
gradients of the interpolated surface [1]. A maximum-area-bound ensures local accuracy 
for the allocation of element-to-node-contributions by means of the weighting function. 
Both constraints are handled via Rupert’s Refinement algorithm [14]. Steiner points 
elevations are available via interpolation from the grid elevation matrix. The model 
concept applies the open-source algorithm Triangle, developed by Shewchuck [16]. 

MODEL APPLICATION 

Automatically meshing the river junction Bramau/Stoer in Northern Germany accesses a 
LiDAR data density of nine measurements per square meter. Breakpoint extraction is 
performed by the One-Over-Distance method on a 1m-grid. Scrit.=10° denotes the shallow 
terrain and derives suitable breakpoint sets at the scale of detail � � . Within a 
rectangular domain a Delaunay refinement based on thinned break lines description, a 

0.5m
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100m²-maximum-area-bound of and a 25°-minimum-angle-bound is performed. Figure 2 
illustrates thinned break lines, retaining simply every 4th breakpoint, denoting a 
maximum tolerance factor � . The grade of abstraction equals 0.9m for this mesh. 
The inverted map uses a random color shading to show that natural break lines are 
retrieved as multiple components, high lightning particularly brightly shaded break line 
components. Using 0.1% of the LiDAR data for quality assessment of this terrain 
representation yields dominantly residuals below 10cm (gray pixels). Less residuals 
amount to 10-25cm (white pixels). No residual exceeds 25cm. Hydrodynamic simulations 
for this terrain representation verify the applicability of this method. 

1.8�

CONCLUSION 

This concept for automatic meshing provides a fast and efficient method to exploit high-
resolution data. It generates various scales of terrain representation at predictable error 
bounds. Furthermore, the concept contributes a vital basis to assess the impact of mesh 
resolution in hydrodynamics and its impact on friction losses and turbulence modeling. 

 
Figure 2. Automatically meshing the river junction Stoer/Bramau, Northern Germany. 
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