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ABSTRACT 
Topography has a great influence on many characteristics which are connected to the distinct area on Earth 
such as hydrology, microclimate characteristics, vegetation cover properties, geological structures, mineral 
deposits, plant characteristic etc. Digital terrain models represent segments of spatial data bases related to 
presentation of terrain features and landforms. Square grid elevation models (DEMs) have emerged as the 
most widely used structure during the past decade because of their simplicity and simple computer 
implementation. They have become an important segment of Topographic Information Systems (TIS), 
storing natural and artificial landscape in forms of digital models. This kind of  data structure is especially 
suitable for morphometric terrain evaluation and analysis which is very important in modeling Earth 
surface and atmospheric processes or environmental modeling applications. Treating topographic 
parameters like slope, aspects and terrain curvature as the first and second derivatives or terrain surface, 
they can easily be calculated in such data structures. 

DEMs are used as proxies for the actual terrain surface and determined as a gathering of the measured 
terrain data and interpolation techniques. According to this statement, the quality of DEMs are 
characterized by the uncertainty being referred to data model-base uncertainty and data based uncertainty. 
According to the regular grid structure of points, uncertainties in DEMs are mostly treated through the 
height accuracy of the points. Well known methods to assess the uncertainty of derived parameters, such as 
Monte Carlo stochastic simulation techniques, are already used for these purposes. This method has both 
good and inferior characteristics. Production of numerous realizations of DEMs for particular terrain and 
subsequent statistical analysis may be time consuming and limited with available computer memory. 
Simple numerical solution of a variance propagation technique is presented in this paper as a possible 
alternative for uncertainty assessment of derived topographic parameters. Both uncorrelated and correlated 
uncertainty scenarios are taken into account. Obtained results are confirmed with Monte Carlo approach 
with high level of agreement.  
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1 INTRODUCTION 
Gathering, maintenance and visualization of relief data are mostly used GIS (Geographical Information 
System) functions. This segment of GIS applications is well known as Digital Terrain Model (DTM). 
During the last decade this has become convenient tool for representing terrain surface, not only in GIS 
applications, but in computer assisted software for projecting, as well. DTM bases are organized in 
different manners, like Triangular Irregular Networks (TIN) or in regular lattice (GRID). Term DEM is 
related to terrain height databases with regular grid structure or altitude matrix, and the term Digital 
Terrain Models (DTM) is mostly related to TIN structures.  

DEMs approach for data base structures is suitable for National Heights Data Bases which cover the  
area of the whole country area as a part of nation-wide spatial data bases available from the national 
mapping agencies. This kind of data bases are very useful in various application areas in GIS, like 
ecological studies, 3D urban mapping, environmental monitoring, landscape planning, geological analysis, 
civil engineering, floodplain analysis, risk maps etc.  They are also very suitable in complex analysis, 
especially in superimposing other kind of data, like satellite images or remotely sensing information. The 
new and improved methods of an analysis allow users to process even more complex application tasks with 



combinations of geometrical, topological and thematic aspects using hybrid data, i.e. raster data, as well as, 
vector data [1] 

DTM concept had started as a stand alone application intended for different engineering tasks. 
Nowadays, it is a part of the spatial data bases which store the natural and artificial landscape in the form 
of digital models. DEM are compulsory component of one categories of spatial information systems known 
as Topographic Information System (TIS) [2]. 

Geomorphometry, defined as science ‘which treats the geometry of the landscape’ with quantitative 
parameters, attempting to describe the form of land surface, represents one of the disciplines where DEMs 
products are completely implemented. 

Slope, aspect, profile (vertical) and contour (horizontal) curvature (convexity) are basic attributes of 
land surface at the vertex or its close neighborhood, and they form a coherent system for terrain analysis 
and description, easily calculated with such arranged databases of terrain heights[3]. 

DEM data is subject to errors such as any other spatial data source. DEM users must keep in mind that 
results obtained by analysis and processing of such data depend on the quality of this data. Quality 
assessment of obtained results indicates their reliability and suitability for particular applications. 

Since a dataset is produced rather  for various than just for one specific application, the quality of 
dataset can be assessed only by knowing the data quality elements, as well as by the data quality overview 
element [4].  

2 DEM QUALITY ASSESSMENT 
Terrain heights in DEM data bases are considered as point features in which heights components are stored 
as attributes. This concept is well known as 2.5 GIS data model. Attribute accuracy is the main element of 
quality of such spatial databases. Accuracy can be defined as closeness of agreement between the test 
result and the accepted reference or ‘true’ value, where reference values are data sources of higher 
accuracy. However, a true value or location is a luxury not often available in spatial data. 

In the case of spatial data it refers to data of larger scale and resolution or usage of instrument of higher 
accuracy or more recent measurements. All those imply that definition of accuracy is relative and for that 
reason term accuracy is substituted with uncertainty. 

Many words with similar connotation are used to express term uncertainty, like reliability, confidence, 
accuracy, error etc. This term is especially suitable for reporting the assertiveness of variables where true 
values are unknown. Under these circumstances it is not feasible to calculate exactly the error of the 
appraisal. A useful step in assessing the uncertainty is to consider the factors by which the error is 
influenced [5]. 

Two DEM-related uncertainty categories are commonly recognized. The primary is data model-based 
uncertainty, resulting from differences between the form of data model and actual elevation surface. The 
second is data-based uncertainty, referring to differences between the elevation of location specified in the 
data set and actual elevation at that location [6]. 

DEM altitudes are given as interval data, and root mean square error (RMSE) or standard deviation 
could be used as an uncertainty metrics. The RMSE calculated from residuals between models heights and 
‘ground truth’ points is commonly used measure of the accuracy for the DEMs products [7]. Another 
powerful measure is the standard deviation of residuals, obtained from discrepancies between model 
heights and terrain heights at the particular locations. 
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where: 
di- residual between height in DEM and ‘true’ height di=zDEM-zt, 
n- number of control points. 
 



Accuracy evaluations often uses field survey data based on the Global Positioning System (GPS) 
because of high accuracy. 

Performing control measurements is a standard procedure for evaluating the quality of DEMs products. 
It can also be performed by DEMs users if they are not acquainted with lineage of data. Locations of the 
control points have to be randomly chosen [8]. 

Developing adequate GIS methods and techniques which can take uncertainty of spatial data into 
account during their processing are crucial for errors handling in subsequent analysis [9]. The problem of 
error propagation through GIS operations can be undertaken by using statistical theory [10].  

This analytical analysis can be achieved when algebraic relationships between input data and output 
results are simple, e.g. slope calculations in geomorphometry analysis (equation   ). 
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where: 

σslope- standard deviation of a slope, 
d- grid spacing, 
r- correlation between elevation errors. 
Due to sufficiently complex analyses being performed in many GIS applications this analytical 

approach is usually impossible. Instead, uncertainty must be propagated by simulations and analyzed from 
the results, known as Monte Carlo approach [11]. This is more general approach where error is modeled 
stochastically through numerous simulations of probable realizations of DEM by producing a distribution 
of results which may be assessed statistically. 

Two issues are important for this approach, the magnitude of error of the input data as well as the 
spatial structure of error. The spatial structure of error may be represented by semivariograms or 
covariograms.  

Producing numerous realizations of DEMs for a particular terrain and subsequent statistical analysis 
may be time consuming and limited by the available computer memory. 

3 NUMERICAL SOLUTION FOR ERROR PROPAGATION 
An alternative of analytical approach of DEMs uncertainty assessment which avoids complicated formula 
derivations is offered in this section.  

Value of primary geomorphological parameters for particular grid cell is calculated as function of 
heights of surrounding cells: 

y=f(z1,z2,...zn)       (3) 
where: 
y- value of a particular geomorphological parameter. 
zi- terrain height in surrounding grid cell. 
n- number of surrounding cells, 4 for rook’s case and 9 for queen’s case (fig. 1.) 
 



 

Figure 1. Chess rules for rook’s and queen’s motion 

Since formula (3) is often nonlinear, the linearization is given by: 
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are calculated with aproximate values of the surrounding cells. Numerical procedure for calculation 
gives us the following equation: 
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where ∆z is a small arbitrary increment. 
Equation (4) can be present as: 

0 1 1 2 2 ... ny y a z a z a z= + ∆ + ∆ + + ∆ n      (7) 

or in matrix form: 
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The variance of y can be determined by rules of error propagation law: 
2      T
y z y zA C A A C Aσ σ= ⋅ ⋅ ⇒ = ⋅ ⋅T      (9) 

where 2
yσ  is variance of particular geomorphological parameter, Cz is covariance matrix of error cells 
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where 2
iiσ is variance and ijσ  is covariance of heights errors. The matrix Cz is also symmetric, which 

means that, σij=σji. 
When heights errors are uncorelated, matrix Cz has the following structure: 
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In the case that variances of heights errors of surrounding cells are equal with 2
zσ  value, then: 

2

1 0 0
0 1 0

0 0 1

z z zC σ

 
 
 =
 
 
  

…
…

#
…

2 Iσ= ⋅

2
n nn

     (12) 

where I represents the unit matrix. For given conditiones in equations (11) and (12) the variance of 
geomorphological parameters will be: 

( )

2 2 2 2 2 2
1 11 2 22

2 2 2 2 2
1 2

...

...
y

y n z

a a a

a a a

σ σ σ

σ σ

= ⋅ + ⋅ + + ⋅

= + + + ⋅

σ
     (13) 

It is necessary to determine non diagonal terms of matrix Cz for corellated heights errors. Under the 
assumption that corellation between heights errors becomes weaker with longer distance, one of possible 
models for correlation is exponential function: 
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where 
dij- distance between i and j cells 
D – correlation distance.  
 

 
Figure 2. Flow chart for numerical solution for uncertainty assessment of topographical parameters 
Presented procedure is suggested as practical solution with regard to time and computing resources for 

uncertainty assesment of calculated topographical parameters. Results obtained with this approach have 
been verifyied by comparing them with the results obtained from Monte Carlo stochastic simulations. 

4 FORMULAS FOR CALCULATION OF TOPOGRAPHICAL PARAMETERS 
It is straightforward to obtain primary geomorphological parameters in every grid cell according to the 

above mentioned scheme by calculating partial derivatives with method of finite differences: 
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Slope S shows the rate of change of height of the terrain surface with distance: 
22
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Slope controls runoff and soil loss, thickness of soil horizons, some plant characteristics. 



Aspect A is the orientation of the line of steepest descent, which is measured in clockwise direction 
starting from north: 
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In association with slope, aspect controls isolation and evapotranspiration, it influences thickness of soil 
horizons and some plant properties, also. 

Horizontal curvature Kc is the curvature in the horizontal plane of contour line. Vertical curvature Kp is 
the curvature in the vertical plane of a flow line. They represent the rate of change of a first deriviate such 
as slope or aspect in particular directions. Tangential curvature Kt is curvature in an inclined plane 
perpendicular to both the direction of flow and the surface. Tangential curvature represents horizontal 
curavture multiplied by the sine of the slope angle, and it is more appropriate than horizontal curvature for 
studing flow diveregence and convergence when terrain slope is too small[12]: 
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Horizontal and vertical curvatures are the determining local factors of the dynamics of overland and 
intrasoil water, they influence soil moisture, pH, thickness of soil horizons, organic matter, plant cover 
distribution[13]. 

5 CASE STUDY 
DEM was produced by digitizing contour layers from two adjacent sheets of the topographic maps of scale 
1:5000, with contour interval of 5m, with total area of 13.5 square kilometers for the research purpose. Test 
location is the resort area Zlatibor in south western Serbia with minimum height of 850m and maximum 
height of 1174m. This area is hilly plateau, with the exception of the west and north-west part with greater 
slopes of terrain. 

Digitized polylines with height attributes were broken into vertices and such big amount of obtained 
points was reduced by using the Douglas-Peucker algorithm for polyline simplification to 51847 points. A 
DEM was produced in two steps: An initial TIN was produced using a Delaunay triangulation, being 
subsequently converted into regular grid with 10m resolution (350 rows by 400 columns).  



 

Figure 3. DEM of test area “Zlatibor” 

A GPS survey of control points has been carried out, using fast static and real time kinematics (RTK). 
 A seven parameters similarity transformation was used to bring GPS coordinates into official reference 
system. Ellipsoidal GPS heights were transformed into orthometric system by polynomial model of second 
degree. The achieved accuracy of heights is estimated to be better than 3 cm. 

Calculated σz for data set was approximately 1.25m, and obtained result is in accordance with the 
expected accuracy of the cartographic source data used for DEM production [14]. Estimated correlation 
distance of errors was D=110m. 

The estimated uncertainties (standard deviation) of topographic parameters obtained by stochastic 
simulations σsim are compared with values σan of standard deviations obtained analytically by proposed 
algorithm. Both correlated and uncorrelated heights errors were taken into consideration.  

Monte Carlo simulations were carried out by adding generated error fields to initial DEM [15]. Both 
uncorrelated (worst case scenario) and correlated error fields have been generated. For each scenario 25 
simulations were made, as it was necessary to yield a statistically useful result at the 0.05 significance 
level  [16]. 

The compliance of standard deviations was checked for each grid cell by testing of hypothesis: 

H0: estimated values of standard deviations are similar σan = σsim 

H1: estimated values of standard deviations are not similar  σan ≠  σsim  

Analytically obtained value σan has f = ∞ degrees of freedom while simulated estimate has 
 degrees of freedom, with number of simulations n=25. Depending on test statistics, 

following critical values (for 99% probability) were used: 
1 24f n= − =

0.99 0( ,24) 2.21F F H∞ =∼ , 0.99 0(24, ) 1.79F F H∞ =∼  

Table 1. Acceptance of Fisher’s test of similarity of simulated and analytically obtained uncertainty estimates for 
each topographic parameter 

 F_σS F_σA F_σkc F_σkp F_σkt 

Uncorrelated error fields 89.7% 61.9% 69.8% 97.7% 96.7% 

Correlated error fields 84.8% 71.8% 73.0% 90.9% 85.9% 

Legend: F_σi- Fisher's test for ith topografical parameter, σS- standard deviation of a slope, σA- standard 
deviation of an aspect, σkc- standard deviation of contour curvature, σkp- standard deviation of profile 
curvature, σkt- standard deviation of tangenential curvature. 



The acceptance of Fisher’s test (acceptance of hypothesis H0) is given in percentages which show the 
rate between the number of cell where hypothesis H0 is accepted in regard to whole number of grid cells. 

The agreement of these estimates varies from one parameter to the other, with a view that this 
agreement is somewhat lower for aspects, but which is quite expected considering specifies of those 
aspects closer to values of 0o or 360o respectively. 

7 REMARKS 
This analysis can not give an answer which one of both discusssed methods for uncertainty estimation 
gives more realible results. Nevertheless it confirms that simple numerical solutions for analitical method 
gives similar results as stochastic simulations. This procedure could be suggested as simple and economic 
regarding to software and time resources for an uncerainty analyses in geomorphometry. 
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