10th International Conference on
Computer and IT Applications in the Maritime Industries

COMPIT’11

Berlin, 2-4 May 2011

Edited by Volker Bertram
This work relates to Department of the Navy Grant N62909-11-1-1049 issued by the Office of Naval Research Global. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.
Welcome to the 10th COMPIT Conference

Greetings from Erik van der Noordaa, CEO GL Group

The maritime industry could not survive without modern information technology. Today, the informed public and legislative bodies all over the world expect that shipping contributes to fighting global warming and reduces its carbon footprint. While the industry encounters a period of tightening emission limits, commercial pressures and fuel surcharges, substantial savings are only feasible by advanced applications and programs.

This simple observation corresponds with the idea of the Conference for Computer and IT applications in the Maritime Industry. COMPIT has and will continue to promote the dialogue between the maritime and IT industries as well as key research groups from academia. If the conference had not been initiated ten years ago, it would be high time to get started and enter a new phase of energy efficiency. While there are many other exciting topics on the agenda of the 10th Conference for Computer and IT applications in the Maritime Industry, the ultimate challenge is to provide smart technical solutions.

Today's ability to undertake even more complex simulations vastly improves the scope and sophistication of designs and their integrated environments. This is reflected by the introduction of commercial software tools which help to address the dominant topics of fuel efficiency and emission reduction.

Looking beyond the urgent requirements for shipping, advances in individual and swarm intelligence are opening up new applications in surveying and search tasks, in offshore, oceanography and navy applications. The conference covers a broad spectrum of themes which apart from the life cycle of ships, offshore structures and equipment, address frontier developments of a highly complex nature.

I wish everyone an inspiring exchange of ideas!

Erik van der Noordaa
CEO GL Group
Index

Milovan Peric, Volker Bertram
Trends in Industry Applications of CFD for Maritime Flows 8

Anthony S. Daniels, Morgan C. Parker, David J. Singer
Intelligent Ship Arrangements (ISA) Passage Variable Lattice Network Templating Application 19

Valery Mrykin, Alexander Leshchina, Alexander Antonov, Manucher Dorri
Hardware-in-the-Loop Simulation System for Submersible Dynamics with Visualization of Environment Near the Sea Bottom for Training of Submersible Crews 31

Auke van der Ploeg
A Comparison of Strategies for the Optimization of a Ship’s Aft Body 43

Philippe Renard
IT Supported Maintenance, Inspection and Repair of Offshore Floating Windmill Farms 56

Tobias Huuva, Magnus Pettersson
Optimization for Improved Propulsive Efficiency and Increased Bollard Pull 66

Marco Bibuli, Gabriele Bruzzone, Massimo Caccia, Thomas Vögele, Markus Eich, Alberto Ortiz, Leonidas Drikos, Yannis Koveos
MINOAS Project: Localization, Task-Allocation and Path-Planning Architecture System 74

Wilfried Abels
Using a Mathematical Symbolic Solver to Transfer Analytic Theory to Numerical “First-Principle-Methods” 88

Thomas Koch
Simulating the Production of Future Marine Products 98

Leif Christensen, Niklas Fischer, Sven Kroffke, Johannes Lemburg, Reinhard Ahlers
Cost Effective Autonomous Robots for Ballast Water Tank Inspection 109

Rikard Mikalsen
Patent Protection of Software-Based Inventions in the Maritime Industry 124

Roberto Penas, Carlos González
Integration of DB Oriented CAD Systems with Product Lifecycle Management 134

Rolf Nagel
Software Applications for Life-Cycle Management at a Shipyard 148

David Thomson
The Role of Social Computing in Shipbuilding 156

Josep Aulinas, Yvan R. Petillot, Xavier Lladó, Joaquim Salvi, Rafael García
Vision-Based Underwater SLAM for the SPARUS AUV 171

Andrea Caiti, Vincenzo Calabrò, Sergio Grammatico, Andrea Munafò, Mirko Stifani
Control-Oriented Modeling of an Underwater Wave Glider 181
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Limits in Harbour – A Method to Optimise the Noise Emission of</td>
<td>188</td>
</tr>
<tr>
<td>Vessel’s Ventilation Systems</td>
<td></td>
</tr>
<tr>
<td>Evaluating the Feasibility of Open Source CFD Software for Small</td>
<td>195</td>
</tr>
<tr>
<td>Ship Design Offices</td>
<td></td>
</tr>
<tr>
<td>Numerical Hull Series for Calm Water and Sea-Keeping</td>
<td>206</td>
</tr>
<tr>
<td>CAD-Centric, Multi-Source Data and Information Management</td>
<td>221</td>
</tr>
<tr>
<td>Generating Contract Scenarios for the Conceptual Design Optimization</td>
<td>237</td>
</tr>
<tr>
<td>of Non-Transport Vessels</td>
<td></td>
</tr>
<tr>
<td>Optimal Hull-Form Design Subject to Epistemic Uncertainty</td>
<td>245</td>
</tr>
<tr>
<td>Virtual Reality Supported Assembly Planning in the Shipbuilding</td>
<td>253</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
</tr>
<tr>
<td>Reduced Beam Model – The Seek after Adequate Accuracy with Feasible</td>
<td>264</td>
</tr>
<tr>
<td>Performance in Global Structural FE-Analysis of a Naval Vessel</td>
<td></td>
</tr>
<tr>
<td>Discrete Event Production Simulation and Optimisation of Ship Block</td>
<td>271</td>
</tr>
<tr>
<td>Erection Process</td>
<td></td>
</tr>
<tr>
<td>A Particle Swarm Algorithm-Based Optimisation for High-Strength Steel</td>
<td>283</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
</tr>
<tr>
<td>A Novel Ship Subdivision Method and its Application in Constraint</td>
<td>292</td>
</tr>
<tr>
<td>Management of Ship Layout Design</td>
<td></td>
</tr>
<tr>
<td>A Machine-Learning Approach to Predict Main Energy Consumption under</td>
<td>305</td>
</tr>
<tr>
<td>Realistic Operational Conditions</td>
<td></td>
</tr>
<tr>
<td>CAFE: An Innovative Multi-User System for Rapid Generation of Ship</td>
<td>317</td>
</tr>
<tr>
<td>Concepts</td>
<td></td>
</tr>
<tr>
<td>Evaluating Evacuation Simulation Results in a Virtual Reality</td>
<td>326</td>
</tr>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Introducing Highly-Efficient CAE Pre- and Post-Processing Solutions</td>
<td>335</td>
</tr>
<tr>
<td>in Maritime Design</td>
<td></td>
</tr>
<tr>
<td>The Use of Paramarine and modeFRONTIER for Ship Design Space</td>
<td>347</td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
</tr>
<tr>
<td>Non-Disruptive Development of a Next-Generation CAD Application</td>
<td>359</td>
</tr>
<tr>
<td>Program</td>
<td></td>
</tr>
</tbody>
</table>
Sebastian D. Bade, Andreas Junglewitz
Automated Strength Analysis for Propeller Blades

Andrea Caiti, Vincenzo Calabrò, Giuseppe Conte, Pierre Drap, David Scaradozzi, Silvia Zanoli
Underwater Archaeology Surveys with Autonomous Robots

Jukka Ignatius
Fleet Wide Operational Reporting - Performance and Environment

Ties van Bruinessen, Hans Hopman, Thomas DeNucci, Bart van Oers
Generating More Valid Designs during Design Exploration

Stefan Harries, Fabian Tillig, Marc Wilken, George Zaraphonitis
An Integrated Approach for Simulation in the Early Ship Design of a Tanker

Richard Pawling, David Andrews
Design Sketching – The Next Advance in Computer Aided Preliminary Ship Design?

Hamid Hefazi, Josh Hamel, Adeline Schmitz
Development of Decomposition-Based Design Optimization Tools for Ship Design

Dirk Steinhauser
The Simulation Toolkit Shipbuilding (STS) – 10 Years of Cooperative Development and Interbranch Applications

Anna Bruns, Katja Christiansen, Dirk Rossow
FSG.EcoPilot – An Onboard Tool for Fuel Efficient Speed Profile Selection

David E. Hess, William E. Faller
Ensuring Stability in Synergistic Computing: Combining Flow Simulations and Neural Nets to Predict Maneuvering

Carlos V. M. Santos
The Employment of 3d Collaborative Environment from the Very Beginning of the Conceptual Warship Design Stage

Marc Wilken, Henner Eisen, Matthias Krömer, Christian Cabos
Hull Structure Assessment for Ships in Operation

Fernando Henrique e Paula da Luz, Humberto S. Makiyama, Liria Matsumoto Sato, Kazuo Nishimoto
A New Proposal of Communication in a Numerical Model Basin Simulator

Denis Morais, Mark Waldie, Darren Larkins
Driving the Adoption of Cutting Edge Technology in Shipbuilding

Tomi Holmberg, Shaun D. Hunter
Increasing Efficiency in the Ship Structural Design Process

Index of authors

Call for Papers COMPIT’12
Trends in Industry Applications of CFD for Maritime Flows

Milovan Peric, CD-adapco, Nuremberg/Germany, milovan.peric@de.cd-adapco.com
Volker Bertram, FutureShip, Hamburg/Germany, volker.bertram@GL-group.com

Abstract

The paper surveys developments in CFD applications for maritime structures (ships, propellers and offshore structures) over the past decade. Progress is significant in integrating the process chain, particularly more automated model generation. Increased hardware power and progress in various aspects of the flow solvers allow more sophisticated applications and wider scope of applications. Selected examples taken from industry and research applications show the increasing importance of CFD in earlier design stages.

1. Introduction

Computational fluid dynamics (CFD) denotes collectively techniques solving equations describing the physics of flows. We interpret “CFD” here as techniques solving Euler, RANSE (Reynolds Averaged Navier-Stokes Equations) or Navier-Stokes equations, using field methods, Ferziger and Peric (2010), Bertram (2012).

Fig.1: Simulation of coolant flow in an engine block in 1988

Fig.2: Modern CFD analyses with high level of detail
CFD became a research field in the late 1960s. First commercial CFD software appeared in the 1980s including codes like PHOENICS, FLUENT, STAR-CD, CFX, TASCFLOW, and FLOW3D. By today’s standard, these codes were very limited in terms of complexity of geometry and physics. Applications were severely limited by the available computer power in those days. An example may illustrate how CFD progressed over the decades. In 1988, an advanced CFD application in the automotive industry investigated the coolant flow in an engine block using some 10000s of cells, Fig.1.

Two decades later, the progress in CFD allows the simulation of fluid and heat flows in engine compartments with some 700 parts and typically around 30 million control volumes, even 100 millions for detailed studies, Fig.2. However, the increase in grid size and associated capturing of geometry and flow details is only one aspect of the CFD developments of the past decades. It is a perhaps surprising fact that computational times have increased over the years. The demand for ever more ambitious simulations (in terms of cell count and flow complexity) thus outpaced the exponential growth in computational power.

Despite the increase in average computational time, CFD projects today are often noticeably shorter than they were two decades ago. This is due to less frequent re-modelling and re-analyses, and also generally significantly reduced time in pre-processing. The reason is that CFD tools have become more user-friendly, Fig.3. This is perhaps best illustrated in the case of integrated design environments, e.g. the Friendship Framework, Abt and Harries (2007). The integrated design environment combines freeform hull description using parametric modelling, interfaces to most modern CFD solvers including STAR-CCM+, several optimization algorithms, and software to handle process management and user interface. The design engineer can then work on simulation driven designs (e.g. of hulls, appendages or propellers) with one integrated user interface from model generation to post-processing. The user-friendliness of this approach has certainly lowered thresholds in using CFD for designers.

There are many more aspects that have in sum advanced the wide acceptance of simulation first as a design and more recently as an optimisation tool in industry. The most important among these aspects are:
• The ability to handle complex geometry with all relevant details, including moving parts;
• Efficient simulation process (from geometry to solution, parametric studies, optimization studies, user interface...);
• Adequate modelling of turbulence, free-surface effects and cavitation;
• Coupled simulation of flow and flow-induced motion (and in some cases deformation) of bodies.

These will be discussed in more detail in the following.

2. Key aspects of progress in CFD for maritime flows

2.1. Handling of complex geometry

During the past decade, the ability to handle complex geometry with all relevant details has been greatly improved. Components that have contributed to this trend include:

• Tools for automatic and user-friendly manual repair of CAD models (which are often imperfect) have been developed; IGES files coming from designers frequently feature overlaps and gaps. These are not problematic for design purposes (e.g. volume computations are required for ship stability and capacity), but frequently lead to fatal errors for CFD grid generation.
• Surface-wrapping tools have been introduced, which create a closed surface around assemblies of solid parts, Fig.4;
• Tools for automatic generation of polyhedral, trimmed hexahedral or extruded meshes have been developed;
• Automatic and manual definition of local mesh refinement requirements have been created, based on:
 − local curvature, proximity of other walls etc.;
 − pre-defined regions, interfaces, wakes etc.;
 − indication or estimate of numerical error...

Grid generation has improved, making it easier to generate high-quality grids for accurate CFD simulations. A key aspect for complex geometries consisting of many components (such as offshore platforms in the maritime context) is geometry recognition. The software then recognizes automatically cylinders (with extrusion along centreline, using prismatic cells) and thin solids or gaps, with projection from one side to another, using prismatic cells).

Fig.4: Re-meshed surface of a complete oil rig after surface-wrapping (left) and simulated air flow field around the oil rig with surface pressure and wake velocity (right)

More sophisticated analyses for ships and offshore platforms employ a variety of techniques that have become widely available (through commercial and open-source software):