9th International Conference on Computer and IT Applications in the Maritime Industries

COMPIT’10

Gubbio, 12-14 April 2010

Edited by Volker Bertram
Sponsored by

www.onrglobal.navy.mil

www.aveva.com

www.foran.es

www.shipconstructor.com

www.napa.fi

www.ssi.tu-harburg.de

This work relates to a Department of the Navy Grant issued by the Office of Naval Research Global. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.
Index

Ahmad F. Ayob, Tapabrata Ray, Warren F. Smith 7
A Framework for Scenario-Based Hydrodynamic Design Optimization of Hard Chine Planing Craft

Volker Bertram, Patrick Couser 20
Aspects of Selecting the Appropriate CAD and CFD Software

Markus Druckenbrod, Jochen Hundemer, Moustafa Abdel-Maksoud, Max Steden 30
Optimisation of Single and Multi-Component Propulsors

Valery Mrykin, Vyacheslav Lomov, Sergey Kurnosov, Manucher Dorri 39
Training Complex for Training Submarine Motion Control Skills on the Basis of Virtual Dynamic Systems

Jose Marcio Vasconcellos 48
Ship Structural Optimization under Uncertainty

Jean-David Caprace, Frédéric Bair, Philippe Rigo 56
Multi-Criterion Scantling Optimisation of Passenger Ships

Isabelle Toulgoat, Pierre Siegel, Yves Lacroix, Julien Botto 65
Operator Decision Modeling in a Submarine

Matteo Diez, Daniele Peri 76
Two-stage Stochastic Programming Formulation for Ship Design Optimization under Uncertainty

Kunihiro Hamada, Yoshifumi Takanobu, Kesavadev Varikkattu 90
Development of Ship Design Support System in Consideration of Uncertainty in Product Information

Anthony S. Daniels, Morgan C. Parker, David J. Singer 99
Effects of Uncertainty in Fuzzy Utility Values on General Arrangements Optimization

Verónica Alonso, Carlos González 113
The Challenge in Hull Structure Basic Design: From Traditional 2D Drawings to 3D Early Product Model

Robert Hekkenberg 124
“The Virtual Fleet” – Use of Extended Conceptual Design Data for Trend Analysis of Inland Ship Characteristics

Ralf Tschullik, Hannes Prommer, Pentscho Pentschew, Patrick Kaeding 132
A Concept of Topological Optimization for Bow Structures

Monique Chyba, Michael Andonian, Dario Cazzaro, Luca Invernizzi 139
Trajectory Design for Autonomous Underwater Vehicles for Basin Exploration

Marco Bibuli, Massimo Caccia, Renato Robino, William Bateman, Thomas Vögele, Alberto Ortiz, Leonidas Drikos, Albena Todorova, Ioannis Gaviotis, Francesco Spadoni, Vassiliki Apostolopoulou 152
Robotic Tools to Assist Marine Inspection: The MINOAS Approach
Frank Borasch
A Digital Planning Tool for Outfitting: “DigiMAus” 166

George Bruce, Mike Evans
Reducing Management Software Costs 176

Thomas Koch
Validation and Quality Control of Design and Production Information - Applying Rule Based Data Mining and Business Intelligence Concepts to Engineering 182

Roope Kotiranta
Extended usage of a Modern Product Model in Finite Element Analysis 194

Hermann Lödding, Axel Friedewald, Lars Wagner
Rule-Based Resource Allocation – An Approach to Integrate Different Levels of Planning Detail in Production Simulation 203

Tomasz Abramowski
Combining Artificial Neural Networks and Simulated Annealing Algorithm for Increasing Ship Transport Efficiency 213

Tomasz Abramowski, Tadeusz Szelangiewicz, Katarzyna Żelazny
Developing of a Computer System Aiding the Determination of Mean Long-Term Service Speed 221

Reyhane Rostami, MohammadReza Matash Boroujerdi
Data Mining to Enhance the Throughput of Container Ports 235

Rolf Oetter
Revitalizing Brazil’s Shipbuilding Industry - A Case Study 243

Darren Larkins
Practical Applications of Design for Production 249

Karel Wagner, Alain Wassink, Bart van Oers, Hans Hopman
Modeling Complex Vessels for Use in a 3D Packing Approach: An Application to Deepwater Drilling Vessel Design 259

Thomas DeNucci, Hans Hopman
Optimization-Based Approach to Rationale Capturing in Ship Design 273

Benedict Boesche
Improvement of Interoperability between Yards and Equipment Suppliers 285

David J. Andrews, Tim P. McDonald, Richard G. Pawling
Combining the Design Building Block and Library Based Approaches to improve Exploration during Initial Design 290

Dirk Steinhauer
GeneSim - Development of a Generic Data Model for Production Simulation in Shipbuilding 304

Tommi Kurki
Utilization of Integrated Design and Mesh Generation in Ship Design Process 311

Marcus Bole
Interactive Hull Form Transformations using Curve Network Deformation 319
Stefan Harries, Florian Vesting
Aerodynamic Optimization of Superstructures and Components

Andrea Caiti, Andrea Munafò
AUV Networks for Adaptive Area Coverage with Reliable Acoustic Communication Links

Heikki Hansen, Malte Freund
Assistance Tools for Operational Fuel Efficiency

Bart van Oers, Douwe Stapersma, Hans Hopman
A 3D packing Approach for the Early Stage Configuration Design of Ships

Shi Wei, Hugo Grimmelius
Comparison of Modeling Techniques for Simulation of Fuel Consumption of Dredgers

Nick Danese
Ship CAD Systems - Past, Present and Possible Future

Océane Balland, Siri Solem, Arnulf Hagen, Stein Ove Erikstad
A Decision Support Framework for the Concurrent Selection of Multiple Air Emission Controls

Edwin R. Galea, Rob Brown, Lazaros Filippidis, Steven Deere
The SAFEGUARD project: Collection and Preliminary Analysis of Assembly Data for Large Passenger Vessels at Sea

Henrique M. Gaspar, Eivind Neumann-Larsen, Audun Grimstad, Stein Ove Erikstad
Efficient Design of Advanced Machinery Systems for Complex Operational Profiles

Martin-Christoph Wanner, Ralf Bohnenberg, Ulrich Kothe, Jan Sender, Reiner Czarnietzki
Development of a Methodology for Calculating Production Times based on Parameters

Igor Mizine, Bruce Wintersteen
Multi-Level Hierarchical System Approach in Computerized Ship Design

Christian Cabos, Uwe Langbecker, Wiegand Grafe
Hull Maintenance Based on a 3D Model

David Thomson
Requirements of a Common Data Model for Total Ship Lifecycle Data Management

Index of authors

Call for Papers COMPIT’11
A Framework for Scenario-Based Hydrodynamic Design Optimization of Hard Chine Planing Craft

Ahmad F. Ayob, UMT, Terengganu/Malaysia, z3237562@student.adfa.edu.au
Tapabrata Ray UNSW@ADFA, Canberra/Australia, t.ray@adfa.edu.au
Warren F. Smith UNSW@ADFA, Canberra/Australia, w.smith@adfa.edu.au

Abstract

An optimization framework for the design of hard chine planing craft incorporating resistance, seakeeping and stability considerations is presented. The proposed framework consists of a surface information retrieval module, a geometry manipulation module and an optimization module backed by standard naval architectural performance estimation tools. Total resistance comprising calm water resistance and added resistance in waves is minimized subject to constraints on displacement, stability and seakeeping requirements. Three optimization algorithms are incorporated in the optimization module: Non-dominated Sorting Genetic Algorithm (NSGA-II), Evolutionary Algorithm with Spatially Distributed Surrogates (EASDS), and Infeasibility Driven Evolutionary Algorithm (IDEA). The individual performance of each algorithm is reported. The proposed framework is capable of generating the optimum hull form, which allows for a better estimate of performance compared to methods that generate only the optimum principal dimensions. The importance and effects of the vertical impact acceleration constraint on manned and unmanned missions are also discussed.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Beam (m)</td>
</tr>
<tr>
<td>C_v</td>
<td>Speed coefficient</td>
</tr>
<tr>
<td>Disp.</td>
<td>Displacement (kg)</td>
</tr>
<tr>
<td>F_n</td>
<td>Froude number</td>
</tr>
<tr>
<td>GM</td>
<td>Metacentric height (m)</td>
</tr>
<tr>
<td>H_1/3</td>
<td>Significant wave height (m)</td>
</tr>
<tr>
<td>I_e</td>
<td>Half angle of entrance (degrees)</td>
</tr>
<tr>
<td>I_a</td>
<td>Vertical impact acceleration (g)</td>
</tr>
<tr>
<td>L</td>
<td>Length (m)</td>
</tr>
<tr>
<td>LCB</td>
<td>Longitudinal centre of buoyancy (m)</td>
</tr>
<tr>
<td>R_A</td>
<td>Added resistance (N)</td>
</tr>
<tr>
<td>R_C</td>
<td>Calm water resistance (N)</td>
</tr>
<tr>
<td>R_T</td>
<td>Total resistance (N)</td>
</tr>
<tr>
<td>T</td>
<td>Draft (m)</td>
</tr>
<tr>
<td>Vol.</td>
<td>Displaced volume (m3)</td>
</tr>
</tbody>
</table>

1. Introduction

Ship design involves the practice of satisfying requirements based on a vessel’s intended tasks and rationalization, Schneekluth and Bertram (1998). The design of a ship should meet statutory requirements, mission requirements, economic criteria, safety requirements and so on. The choices of main dimensions of the ship affect the hydrostatic and hydrodynamic performance of the ship such as its resistance and response in the seaway. Ship design optimization allows the tradeoff between various performance requirements and is an indispensable element of modern day design processes. Consideration of seakeeping performance during the phase of design has been reported in a number of recent studies. Sarioz and Narli (2005) presented an example of seakeeping assessment under various vertical acceleration regimes outlined in ISO 2631, Mason and Thomas (2007) illustrated the use Computational Fluid Dynamics (CFD) and Genetic Algorithm (GA) for the optimization of International America’s Cup Class (IACC) yachts, Peri and Campana (2003) designed a naval surface combatant with total resistance and seakeeping considerations. Other examples involving multiple design aspects i.e. resistance, seakeeping, cost and safety optimization based on specific scenarios have been presented by Smith (1992), Ray (1995), Ganesan (1999), Neti (2005) and Berseneff et al. (2009).

Most of the above studies focused on displacement crafts and there are only a handful studies dealing with planing crafts. Minimization of calm water resistance for planing crafts appears in Almeter (1995) and Mohamad Ayob et al. (2009). Presented in this paper is a scenario based hydrodynamic
optimization of planing craft in seaway operations. An integrated approach is taken that simultaneously considers resistance and motions in a seaway. A number of efficient optimization algorithms are employed for solving the problems posed. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) by Deb et al. (2002) is incorporated in the planing craft optimization framework. In addition to NSGA-II, a surrogate assisted optimization scheme (referred here as EASDS) by Isaacs et al. (2007) and an Infeasibility Driven Evolutionary Algorithm (IDEA) Ray et al. (2009) is incorporated for increased efficiency.

In order to support design optimization of planing craft, the underlying framework should:

1. allow easy incorporation of different scenarios, design criteria etc. with alternate analysis modules providing different levels of fidelity;
2. allow shape representation and manipulation that is able to generate different variants of hull forms with the required fairness and chine definitions; and
3. include an optimization method that is capable of dealing with single and multi-objective optimization problems with constraints. Furthermore, since the performance evaluations are computationally expensive, the optimization algorithms employed should be efficient.

The proposed framework is built using a modular concept with the Microsoft® COM interface as the underlying communication platform between applications. A modular design in any optimization framework opens the possibility of conducting more complex analysis, Ray (1995), where other optimization schemes and high fidelity multidisciplinary analysis tools can be added and executed for comparative purposes. A number of researchers have discussed helpful proposals for integration of different tools within a ship design framework. Neu et al. (2000) applied Microsoft® COM interface in containership design optimization. Mohamad Ayob et al. (2009) used Maxsurf Automation, Maxsurf (2007) (a form of Microsoft® COM interface) for planing craft design optimization. Abt et al. (2009) presented a broader aspect of integration between tools, including integration of in-house and commercial codes using XML files, generic templates and Microsoft COM interface.

2. Optimization framework components

The optimization framework proposed in this paper consists of three applications namely Matlab, Microsoft® Excel and Maxsurf. Maxsurf Automation Library built upon Microsoft® COM interface is used as a medium of communication (inter-process) between applications. Presented in Fig. 1 is a generic sequence diagram to illustrate the workflow of the current optimization framework. The inter-process communication is initialized with the selection of principal dimensions \((L, B, T) \) by the optimizer module in Matlab. Parametric transformation is invoked to generate a candidate hull followed by evaluation of the hydrostatics and calm water resistance of the candidate hull in Maxsurf using the methods of Savitsky (1964). Finally the seakeeping performance is evaluated using the Savitsky and Koelbel (1993) method. This completes one workflow loop. The detail flowchart on the optimization framework is presented in Fig. 2 with further discussion of this provided in subsequent sections.

![Fig. 1: Inter-process communication flow between applications](image-url)
2.1. Geometry tools

The geometry tools consist of a surface information retrieval module and a geometry manipulation module. Shown in Fig. 2, the surface information retrieval module is employed to generate B-spline representation of the hull while the geometry manipulation module changes the shape of the hull based on principal dimensions given by the optimizer.

The formulation of surface information module is based on the inverse B-spline method, Rogers and Adams (1990). A set of known surface (offset) data is used to determine the defining polygon net for a B-spline surface that best interpolates the data. This method is further expanded to yield a representation of a hard chine form that normally represents a planing craft, Mohamad Ayob et al. (2009). Three B-spline surfaces defined by their own respective polygon nets station-wise with the exclusion of the bow are connected to produce hard chines of the planing craft as shown in Fig. 3.