Gegenläufige Propeller für seegehende Handelsschiffe

von

H. Meier-Peter

1972
I n h a l t :

1. E I N L E I T U N G .. 1
2. P R O P E L L E R ... 4
 2.1 Entwurfsverfahren für gegenläufige Propeller 4
 2.2 Gesichtspunkte des praktischen Propellerentwurfes 11
 2.3 Möglichkeiten der Propellerbefestigung 14
 2.4 Sicherung der Propeller 20
3. W E L L E N .. 22
 3.1 Innenwelle ... 22
 3.2 Außenwelle ... 28
4. W E L L E N K U P P L U N G E N 34
 4.1 Innenwellenkupplungen 34
 4.1.1 Losbare Wellenkupplungen 34
 4.1.2 Starre Wellenkupplungen 37
 4.2 Außenwellenkupplungen 38
 5.1 Allgemeines ... 44
 5.1.1 Lippendichtungen 48
 5.1.2 Mechanische Abdichtungen 48
 5.2 Stevenrohrabdichtungen in Anlagen
 mit gegenläufigen Propellern 50
 5.2.1 Innenwellen-Außendichtung 51
 5.2.2 Außenwellen-Außendichtung 57
 5.2.3 Innenwellen-Innendichtung 59
 5.2.4 Außenwellen-Außendichtung 65
6. L A G E R .. 67
 6.1 Radiallager (Zapfenlager) 67
 6.1.1 Wassergedriickte Lager 68
 6.1.2 ölgeschierte Lager 69
 6.1.2.1 Wälzlager 69
 6.1.2.2 Weißmetall-Gleitlager 70
 6.1.3 Zusammenfassung 83
6.2 Axiallager (Drucklager) 85
 6.2.1 Integrale Drucklager 85
 6.2.2 Kombinierte Drucklager 87
 6.2.3 Unabhängige Drucklager 88

7. G E T R I E B E .. 92
 7.1 Mechanisch gekoppelte Untersetzungsgetriebe 92
 7.2 Mechanisch unabhängige Untersetzungsgetriebe 92
 7.3 Schlußfolgerungen 102

8. H A U P T A N T R I E B E .. 103
 8.1 Mittelschnellaufende Dieselmotoren 104
 8.1.1 Zusammenfassung 108
 8.2 Dampfturbinen ... 108
 8.2.1 Dampfturbinenanlagen mit mechanisch un-
 abhängigem Antrieb der beiden Propeller 108
 8.2.2 Dampfturbinenanlagen mit gekoppeltem
 Antrieb der beiden Propeller 111
 8.2.2.1 Anlagen mit mechanischer Koppelung
 durch kämmende Stirnräder 111
 8.2.2.2 Anlagen mit mechanischer Koppelung
 durch Verwendung epizyklischer
 Getriebestufen 112
 8.2.3 Anlagen mit eingehäusigen Turbinen 112
 8.2.4 Zusammenfassung 114
 8.3 Gasturbinen ... 114
 8.4 Schlußfolgerungen 123

9. S C H M I E R Ö L S Y S T E M 124

10. S C H L U ß B E T R A C H T U N G 132

11. D A N K .. 133

12. A N H A N G M , Schrifttumverzeichnis 137
1. Einleitung

Fast alle Arbeiten auf dem Gebiet der Schiffsantriebstechnik beginnen seit einigen Jahren mit der Feststellung, dass die Antriebsleistungen der Seeschiffe infolge vergrößerter Tragfähigkeiten und höherer Geschwindigkeiten wachsen. Diese Feststellung traf bisher sowohl für Tank- und Massengutschiffe als auch für Containerschiffe zu. Wenngleich sich in letzter Zeit Gesichtspunkte ergeben haben, die zu einer unterschiedlichen Entwicklung der Antriebsleistung bei den genannten Schiffstypen führen könnten, hält für Containerschiffe gegenwärtig der Trend zu größeren und schnelleren Einheiten an. Das erste Containerschiff mit einer Antriebsanlage von 120 000 WPS wird demnächst in Dienst gestellt /159/, und Baupläne für noch leistungsstärkere Antriebsanlagen (200 000 ... 300 000 WPS in Mehrwellenanordnung) werden bereits bearbeitet.

In diesem Zusammenhang wird auch der Einsatz von abgewandelten Flugzeug- und Industriegasturbinen-Triebwerken erwogen.

Bei Antriebsleistungen dieser Größe nimmt der Einfluss des monetären Betriebsmittelaufwandes auf die Gesamtwirtschaftlichkeit zu. Wesentlichen Anteil am monetären Betriebsmittelauwand haben die Brennstoffkosten, die, unter anderem, vom Antriebswirkungsgrad abhängen. Der Antriebswirkungsgrad von Containerschiffen kann durch Verwendung von überlappenden Propellern / 87 / oder durch den Einsatz von gegenläufigen Propellern verbessert werden. Letztere lassen mit 5 ... 20 % die höchsten Wirkungsgradgewinne erwarten, die gegenwärtig bei Schiffsantrieben erzielt werden können, vor allem, wenn es sich um die Anlagen für schnelle Schiffe mit geringem Tiefgang handelt /133/.
Zahlreiche unabhängige Versuche, die von den verschiedenen Schiffbauversuchsanstalten durchgeführt wurden, haben gezeigt, daß die hydrodynamischen Probleme gelöst werden können, auch wenn dabei gelegentlich Schwierigkeiten auftreten /91/. Im allgemeinen wird jedoch gute Übereinstimmung zwischen rechnerischer Voraussage und experimentell ermitteltem Ergebnis erreicht /32/, /45/, /102/. Die Probefahrtenmessergebnisse von zwei mit gegenläufigen Propellern ausgerüsteten Kriegsschiffen der United States Navy haben ferner gezeigt, daß sich die Modellversuchsergebnisse auch bei dieser Propelleranordnung auf die Groβausführung übertragen lassen und daß eine gute Genauigkeit der Voraussage erreicht werden kann /155/.

Dennoch wurden gegenläufige Propeller bisher nicht für den Antrieb von Handelsschiffen eingesetzt, da alle bisherigen Versuche aus einem oder mehreren der folgenden Gründe scheiterten:
1) Komplizierteres Übertragungssystem
 (Wellenleitung, Abdichtungen, Getriebe)
 als bei herkömmlichen Anlagen;

2) Fehlende Betriebserfahrung mit einigen Bauelementen
 des Systems (gegenläufige Gleitlager und Abdichtungen)
 und infolgedessen hohe Versicherungskosten;

3) Betriebliche Schwierigkeiten infolge der zu erwartenden
 Schwingungsprobleme;

4) Geringe betriebliche Zuverlässigkeit infolge der zu
 erwartenden Komplizierung der Antriebsanlage;

5) Hohe Baukosten (denen allerdings Einsparungen an Be-
 triebsmittelkosten gegenüberstehen).

Es muß hierzu erwähnt werden, daß die konstruktiven
Probleme bei weitem nicht im gleichen Umfang untersucht
worden sind wie die hydrodynamischen, und trotz der
verschiedenen umfangreichen Arbeiten auf diesem Gebiet
/34/, /43/, /81/, /102/, /189/ gibt es dennoch einige
wesentliche Probleme, die noch genauer untersucht werden
müssen.

Die vorliegende Arbeit befaßt sich daher hauptsächlich mit
diesen konstruktiven Fragen und berührt die hydrodynamischen
nur dort, wo die Wechselwirkung von Schiff und Antriebs-
system es erforderlich werden läßt.
2. Propeller

Dieser Abschnitt wird in folgende Unterabschnitte gegliedert:

2.1 Entwurfsverfahren für gegenläufige Propeller
(Zusammenfassung und Anmerkungen)

2.2 Gesichtspunkte des praktischen Propellerentwurfs
(z.B. Propellerkonstruktion)

2.3 Möglichkeiten der Propellerbefestigung

2.1 Entwurfsverfahren für gegenläufige Propeller

Von den Forschungsinstituten, an denen über gegenläufige Propeller gearbeitet worden ist, wurden unterschiedliche Entwurfsverfahren entwickelt. Dabei handelt es sich im wesentlichen um zwei grundlegend verschiedene Verfahren, das erste auf der "Wirbeltheorie" des Propellers, das zweite auf systematisch entwickelten Propellerserien und den daraus abgeleiteten Auswahldiagrammen begründet.

Obwohl die verschiedenen Entwurfs techniken, die von der Wirbeltheorie ausgehen, sich voneinander unterscheiden, sind sie doch alle abgeleitet aus Lerbs' Arbeiten /108/. Die Änderungen, die in den einzelnen Forschungsinstituten vorgenommen wurden, betreffen kleinere Einzelheiten, was in erster Linie auf der Erfahrung dieser Institute im Entwurf herkömmlicher Propeller begründet ist und manchmal auch auf der verfügbaren Kapazität der jeweiligen Rechenanlage. (Die wichtigsten Veröffentlichungen zu diesen Entwurfsverfahren sind im Literaturverzeichnis angegeben, /108/, /119/, /141/).
Zu den zahlreichen Parametern, die in den Entwurf herkömmlicher Propeller eingehen, kommt die Wechselwirkung zwischen den beiden Propellern; sie hängt u.a. ab vom Abstand der beiden Propeller voneinander.

Verfahren, die auf der Wirbeltheorie aufbauen, ermöglichen es, auch diese Wechselwirkung beim Entwurf des Propellerpaares von vornherein zu berücksichtigen. Darüber hinaus lässt sich bei entsprechender Programmierung gleichzeitig eine Aussage über die zu erwartende Schubexzentrizität (d.h.: die momentane Lage des Schubkraftangriffspunktes) treffen, eine Aussage, die besonders im Zusammenhang mit gegenläufigen Propellern für den Entwurf und die Berechnung der Wellenleistung wichtig ist.

Der Vorteil der auf Auswahldiagrammen begründeten Verfahren ist, daß dem Werftingenieur die Aufgabe des Propellerentwurfes erleichtert wird, was zweifellos erstrebenswert ist. Diese Verfahren haben sich im Zusammenhang mit dem Entwurf herkömmlicher Propeller bewährt und werden heute weitgehend verwendet. Es ist daher anzunehmen, daß sie sich auch im Zusammenhang mit gegenläufigen Propellern bewähren werden, vorausgesetzt, daß grundsätzliche Fragen wie: optimaler Abstand der Propeller voneinander und vom Schiff sowie optimale Lastverteilung zuvor gelöst werden können, gegebenenfalls im Zusammenhang mit ebenfalls standardisierten Schiffsformen. Einen ersten Beitrag in dieser Richtung stellt die Arbeit dar.

Um mit der Entwurfsrechnung beginnen zu können, müssen i.a. einige Annahmen getroffen werden. Bei dem Verfahren nach Lerbs werden beide Propeller zunächst getrennt wie herkömmliche Propeller halber Gesamtleistung behandelt; die Wechselwirkung wird dann im weiteren Verlauf der Entwurfsrechnung aus diesem vorläufigen Entwurf bestimmt und über iterative Schritte in die Rechnung einbezogen.