Potentialtheoretische Druckverteilungen
an einigen drehsymmetrischen Halbkörpern.

Nach Rechnungen von Dipl.-phys. K. Hasselmann
(Okt. 1955)

Institut für Schiffbau
der Universität Hamburg.

Bezeichnungen.

unendlich langer Kreiszyliner
halbes Rotationsellipsoid
Achsenverhältnis
r/a = 1:2, 1:3, 1:4, 1:6 und 1:8

\[P = \text{statischer Druck am Körper, bzw. auf der Achse (für } x > a) \]

\[U = \text{Geschwindigkeit} \]

\[q = \frac{1}{2} U^2 = \text{Staudruck der Anströmung} \]

\[x, y = \text{Koordinaten der Körperkontur:} \]

\[\begin{align*}
 & \text{für } x < 0 \quad y = r \\
 & \text{für } x > 0 \quad \frac{x^2}{a^2} + \frac{y^2}{r^2} = 1
\end{align*} \]

Die Kontrolle \(\int_0^1 P/q \cdot y/r \cdot d (x/a) = 0 \) wurde graphisch durchgeführt.
<table>
<thead>
<tr>
<th>(\frac{x}{d})</th>
<th>(\frac{y}{r})</th>
<th>(\frac{P}{q})</th>
<th>(\frac{U}{U_\infty})</th>
<th>(\frac{P}{q} \cdot \frac{y}{r})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.75</td>
<td>1</td>
<td>-0.042</td>
<td>1.021</td>
<td>-0.042</td>
</tr>
<tr>
<td>-0.5</td>
<td>1</td>
<td>-0.060</td>
<td>1.029</td>
<td>-0.060</td>
</tr>
<tr>
<td>-0.25</td>
<td>1</td>
<td>-0.110</td>
<td>1.053</td>
<td>-0.110</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-0.202</td>
<td>1.096</td>
<td>-0.202</td>
</tr>
<tr>
<td>0.1</td>
<td>0.995</td>
<td>-0.244</td>
<td>1.115</td>
<td>-0.243</td>
</tr>
<tr>
<td>0.3</td>
<td>0.954</td>
<td>-0.299</td>
<td>1.139</td>
<td>-0.285</td>
</tr>
<tr>
<td>0.5</td>
<td>0.866</td>
<td>-0.285</td>
<td>1.133</td>
<td>-0.247</td>
</tr>
<tr>
<td>0.6</td>
<td>0.800</td>
<td>-0.241</td>
<td>1.114</td>
<td>-0.193</td>
</tr>
<tr>
<td>0.7</td>
<td>0.714</td>
<td>-0.161</td>
<td>1.077</td>
<td>-0.115</td>
</tr>
<tr>
<td>0.8</td>
<td>0.600</td>
<td>-0.005</td>
<td>1.002</td>
<td>-0.003</td>
</tr>
<tr>
<td>0.9</td>
<td>0.436</td>
<td>0.350</td>
<td>0.806</td>
<td>0.153</td>
</tr>
<tr>
<td>0.95</td>
<td>0.312</td>
<td>0.611</td>
<td>0.624</td>
<td>0.191</td>
</tr>
<tr>
<td>0.98</td>
<td>0.200</td>
<td>0.803</td>
<td>0.444</td>
<td>0.161</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.05</td>
<td>0.86</td>
<td>0.374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.702</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.472</td>
<td>0.726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>0.340</td>
<td>0.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>0.254</td>
<td>0.864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.197</td>
<td>0.896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>0.118</td>
<td>0.939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.078</td>
<td>0.960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.041</td>
<td>0.979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.025</td>
<td>0.987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.018</td>
<td>0.991</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>