
Development of Virtual Assistant
Chatbot (NLP)
Ibrahim Parvez, Muyang Li, Shravani Nerli, Mausam Thakrar, Sila Eren

Objective
• The project's main objective is to develop a virtual assistant to help customers gather necessary

information for the certification process.

• Pre-developed and pre-trained AI algorithms from Open AI or Python-based frameworks can be used

for the task.

1

Scopes
• Without a power plant certificate in Germany, grid access and feed-in tariffs

are not available.

• The certification process involves many questions regarding specific

requirements for PV installers.

2

• Account managers explain certification requirements to customers repeatedly, including which

documents are needed and specific electrical planning guidelines for solar power plants.

• Aims to support Gridcert, helping as many PV installers as possible to increase renewable

generation annually.

• To achieve scalability, implementation of an intelligent chatbot which can understand spoken

language in English and German.

• To provide immediate support and assistance to customers.

Technical Overview

Tools
• Python

• ChatterBot, a open-source Python library providing a

set of tools to train and create chatbot using

NLP(Natural language processing)-technique

• Django and Flask, are both Python-based web

development frameworks. Django is more feature -rich,

with a steeper learning curve to configure and deploy a

simple project such as this one. Flask is more

lightweight, making the ideal choice for the project.

• Redis, as the database service

• Celery, generate automated response to off-

load ChatterBot’s response generation

• Docker, to deploy Redis, Celery and Django.

How ChatterBot Works

Methods
• First there was goal alignment within

the team to set goals/ milestones

within the scope of the project.

• Upon inspecting different tools, a

decision was made to move forward

with an tool called ChatterBot.

• The biggest argument for using

ChatterBot is because of the huge

community of developers with

potentially existing path to move

forward. Avoiding reinventing the

wheel.

• The possibility to access OpenAI’s

Chat GPT to build this chatbot was

also discussed, but it was decided

not to move forward with it, because

at that time it wasn’t clear to the

team, how to work with a potentially

large non-open knowledge such as

technical specification of electrical

grid.

Fig 2: First iteration on terminal with the Chatbot

• At the end the bot was trained using an unstructured text data extracted from a Q&A of VDE regarding the

implementation of “VDE-AR-N 4110” norm to demonstrate the basic capability of the chatbot. Namely

answering question with specific technical knowledge.

Results
• There were multiple options as to how to

deploy the chatbot to the Internet.

• There is the natively supported option using

Django and there is the simpler approach

using Flask.

• Flask was ultimately chosen for this project,

because it was overall easier to configure the

environment and faster deployment best

suited for the need of the project.

• The final result deployed on the internet:

https://siml1169.pythonanywhere.com/

Conclusion
• In the chatterbot collection, two types of trainer are

employed: the list trainer and the chatterbot-corpus

trainer.

• The FAQ's exhibit as a whole which obtained from VDE.

• There were two frameworks available: Django and Flask.

Based on the convenient factor, Flask has been used.

• The bot has been trained such that it can detect the

different possibilities of same question and answer

accordingly.

• Our upcoming endeavour would concentrate on voice

recognition.

• Open AI-based bots will help the chatbot system

because they will enable quicker and more precise

processing.

3

4 5

6

7

8

Fig 1: Text and voice command Chatbot

Fig 3: ChatterBot Workflow

Fig 4: The final iteration of the Chatbot after deployment

	Slide 1

