

Module Handbook

Master-Program Information and Communication Systems

January 2010

Table of Contents

Table of Contents	2
Speciality Module I: Software for Information and Communication Systems	3
Elective Modules	3
Module: Computational Web	3
Module: Verified Software Systems	4
Module: Software for Embedded Systems	5
Module: Software Analysis	6
Module: Object-Oriented System Development in Process Automation	7
Module: Foundations of Machine Learning and Data Mining	9
Module: Software Security	. 11
Module: Project Seminar	. 13
Speciality Module II: Digital Signal Processing	. 15
Elective Modules	. 15
Module: Adaptive Compute Systems	. 15
Module: Digital Video Signal Coding	. 17
Module: Digital Filters	. 18
Module: Digital Signal Processors	. 20
Module: Digital Audio Signal Processing	. 21
Module: Digital Image Processing	. 23
Speciality Module III: Networking	. 25
Elective Modules	. 25
Module: Optical Communications	. 25
Module: Microwave Engineering	. 27
Module: Communication Networks I: Principles	. 28
Module: Queuing Theory for Communication Networks	. 30
Module: Analysis and Structure of Communication Networks	. 32
Module: Introduction to Antenna Theory	. 34
Module: Mobile Communications	. 35
Module: Network Security	. 36
Assignment and Thesis	. 38
Compulsory Modules	. 38
Module: Project Work	. 38
Module: Master Thesis	. 38

<u>Speciality Module I: Software for Information and Communication</u> <u>Systems</u>

Elective Modules

Module: Computational Web

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Computational Web	Lecture	2
Exercise: Computational Web	Exercise	1
Module Responsible:		
Prof. Weberpals		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Students are expected to have a solid knowledge of Software Engineering in gene	eral and of Java	in particular.
Learning Outcomes:		
A glimpse of the emerging Sementic Grid		
ECTS Credit Points:		
4		
Mode of Examination:		
Integral Examination		
Performance Record:		
Written examination		
Workload in hours:		
Contact Time: 42, Self-study: 78		

Course Unit: Computational Web

- Lecturer: Prof. Weberpals Language: English Period: Winter Semester Contents: • Introduction to
 - Introduction to the Computational Web
 - Grid Services Architecture
 - Web Services Architecture
 - Computational Web Services
 - Future Trends
 - The Semantic Grid

Reading Resources:

Students are expected to have a solid knowledge of Software Engineering in general and of Java in particular.

Module: Verified Software Systems

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Verified Software Systems	Lecture	2
Exercise: Verified Software Systems	Exercise	2
Module Responsible:		
Prof. Schupp		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Discrete mathematics		
Learning Outcomes:		
Knowledge: Foundational theories, methods, and techniques for verifying soft	ware systems	
<u>Skills:</u> Practical experience with relevant tools		
<u>Competencies</u> : Assessing and applying different logics, methods, and tools		
ECTS Credit Points:		
5		
Mode of Examination:		
Integral Examination		
Performance Record:		
Written exam		
Workload in hours:		
Contact Time: 45, Self-study: 105		

Course Unit: Verified Software Systems

Lecturer:

Prof. Schupp

Language:

English

Period:

Winter Semester

Contents:

Propositional logic, predicate logic, model checking, modal logic, program verification Algorithms, modelling languages, tools

Reading Resources:

M. Huth, M. Ryan, Logic in Computer Science, Modeling and Reasoningabout Systems, Cambridge University Press, 200

Module: Software for Embedded Systems

<u>Title</u>	<u>Type</u>	<u>Duration</u>
Software for Embedded Systems	Lecture	2
Exercise: Software for Embedded Systems	Exercise	2

Module Responsible:

Prof. Turau

Prerequisites:

Course Units:

None

Recommended Previous Knowledge:

- Bachelor in Computer Science or electrical engineering
- programming language C
- Generally Comprehension of Microprocessors Learning

Learning Outcomes:

Knowledge: Basic Principles and Procedures for the Design of Software for Embedded Systems Expertise: Analysis of Complex Activities with Temporal Constraints Competencies: Modularization of Complex Systems

ECTS Credit Points:

5

Mode of Examination: Integral Examination Performance Record: Written Examination

Workload in hours:

Contact Time: 45, Self-study: 105

Course Unit: Software for Emdedded Systems

Lecturer:

Prof. Turau

Language:

English

Period:

Summer Semester

Contents:

- Introduction to Embedded Systems
- Software Development for Embedded Systems
- Concurrent systems
- Realt Time
- Programming Embedded Systems
- Operating for Embedded Systems Reading

Reading Resources:

Peter Marwedel, Eingebettete Systeme, Springer Verlag, 2007

Peter Scholz, Softwareentwicklung eingebetteter Systeme, Springer Verlag, 2005

Peter Liggesmeyer, Dieter Rombach (Hrsg.): Software Engineering eingebetteter Systeme. Grundlagen -

Methodik - Anwendungen. Spektrum Akademischer Verlag, 2005

Module: Software Analysis

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Software Analysis	Lecture	2
Exercise: Software Analysis	Exercise	1

Module Responsible:

Prof. Schupp

Prerequisites:

None

Recommended Previous Knowledge:

Imperative and object-oriented programming; standard data structures in computer science; discrete mathematics.

Learning Outcomes:

<u>Knowledge</u>:Standard approaches, methods, and algorithms for automated program analysis <u>Skills</u>: Practical experience with applications and tools <u>Competencies</u>: Evaluation and assessment of different approaches and techniques

ECTS Credit Points:

4

Mode of Examination:

Integral Examination

Performance Record:

Written Examination

Workload in hours:

Contact Time: 42, Self-study: 48

Course Unit: Software Analysis

Lecturer:

Prof. Schupp

Language:

English

Period:

Summer Semester

Contents:

- Intermediate representations and models;
- Intraprocedural data flow analysis;
- Interprocedural analysis;
- Source-code analysis;
- Testing;
- Applications in program understanding

Reading Resources:

M. Pezze, M. Young, Software Testing and Analysis, Wiley 2008. U. Khedker, A.Sanyal, B. Karkare, Data Flow Analysis. Theory and Practice. CRC Press 2009.

Module: Object-Oriented System Development in Process Automation

<u>Title</u>	<u> </u>	<u>Duration</u>
Oject-Oriented System Development in Process Automation	Lecture	2
Exercise: Oject-Oriented System Development in Process Automation	Exercise	2

Module Responsible:

Prof. W. Meyer

Course Units

Prerequisites:

None

Recommended Previous Knowledge:

Basic knowledge in software engineering and programming, e.g. a procedural language. Recommended though not mandatory: lecture 'Industrial Process Automation' by Prof. W. Meyer

Learning Outcomes:

Knowledge: Unified Modelling Language UML, Constraint based representation ILOG OPL, Object-oriented language Smalltalk

Abilities: Object-oriented modelling of complex planning systems with UML

Competence of Systems: Formal UML models for industrial pocesses

Problem Solving Competence: Evaluation of different problem representations, specially of constraint and object-based approaches for the industrial software package AIPLANNER

Social Competence: Social interaction within project groups for the realisation of software modules like the "Event-driven Simulator for industrial Transport Systems"

ECTS Credit Points:

5

Mode of Examination: Integral Examination Performance Record: Written Examination Workload in hours: Contact Time: 45, Self-study: 105

Course Unit: Object-Oriented System Development in Process Automation

Lecturer: Prof. W. Meyer Language: English Period: Summer Semester Contents: Basic Definitions: Graphs and networks

Module Handbook ICS

- Problem Domain: Setup time minimization in Electronics Industry
- Application Software: AIPLANNER planning software package
- Object-oriented Modelling: Principles and methods
- Object-oriented Modelling Languages: UML and Poseidon
- Object-oriented Model: Remodelling AIPLANNER with UML
- Object-based Metrics: Measuring the quality of object-based software
- Constraint Programming: Time logics
- Agent Programming: UML extensions

J. Brauer: "Grundkurs Smalltalk - Objektorientierung von Anfang an". Vieweg Verlag, Wiesbaden 2003
B. Oestereich: "Objektorientierte Softwareentwicklung". Oldenbourg Verlag, München 1998
W. Meyer: "Expert Systems in Factory Management - Knowledge-based CIM". Ellis Horwood, New York 1990

Module: Foundations of Machine Learning and Data Mining

Course Units:

Title	Туре	Duration
–––– Foundations of Machine Learning and Data Mining	Lecture	2
Exercise: Foundations of Machine Learning and Data Mining	Exercise	1
Module Responsible:		
Prof. R. Möller		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Elementary knowledge in Computer Science and Mathematics as usual for a Ma	aster course.	
Learning Outcomes:		
 Knowledge foundational techniques, theories and methods of Machine Lea Capabilities for applying theory-based learning procedure in the context of Skills for assessing the pros and cons of specific learning procedures 	irning and Data I industrial proble	Mining ems
ECTS Credit Points:		
4		
Mode of Examination:		
Integral Examination		
Performance Record:		
Written examination		
Workload in hours:		

Contact Time: 42, Self-study: 78

Course Unit: Foundations of Machine Learning and Data Mining

Lecturer:

Prof. R. Möller

Language:

English

Period:

Summer Semester

Contents:

- Introduction
- Learning from observations
- Inductive learning, introduction to learning decision trees
- Decision tree learning
- Information theory, information gain (ID3), extensions (C4.5), translating decision trees to rules
- Computational learning theory (PAC learning), incremental learning (version spaces)
- Uncertainty
- Bayesian networks
- Learning parameters of Bayesian networks
- BME, MAP, ML, EM algorithm
- Learning structures of Bayesian networks
- kNN-Classifier, neural network classifier, support vector machine (SVM) classifier
- Clustering

- Distance measures, k-means clustering, nearest neighbor clustering
- Knowledge in learning
- Inductive logic programming
- Learning of probabilistic relational models (PRMs)

Artificial Intelligence: A Modern Approach (Second Edition), Stuart Russel, Peter Norvig, Prentice Hall, 2003 Chapters 13-14, 18-21.

Introducion to Machine Learning Ethem Alpaydin, MIT Press, 2004

Module: Software Security

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Software Security	Lecture	2
Exercise: Foundations of Machine Learning and Data Mining	Exercise	1
Module Responsible:		
Prof. Gollmann		
Prerequisites:		

None

Recommended Previous Knowledge:

Familiarity with C or C++; object-oriented progra

Learning Outcomes:

- Knowledge: Major causes for software vulnerabilities; current practices for identifying and avoiding software vulnerabilities; fundamentals of code-based access control.
- Competencies: Vulnerability analysis of code and software systems; secure programming.

ECTS Credit Points:

4

Mode of Examination:

Integral Examination

Performance Record:

Written Examination

Workload in hours:

Contact Time: 42, Self-study: 78

Course Unit: Software Security

Lecturer:

Prof. Gollmann

Language:

English

Period:

Winter Semester

Contents:

- Reliability & software security
- Unicode attacks
- Integer overflows
- Buffer overflows
- Race conditions
- Security testing
- Type-safe languages
- SQL attacks
- Scripting languages
- Identity-based access control
- Code-based access control
- Java security model
- .NET CLR security model

• Stack walks and history-based access control

Reading Resources:

Viega & McGraw: Building Secure Software, Addison Wesley (2001) **Howard & LeBlanc: Writing Secure Code, 2nd Edition, Microsoft Press (2002)** LaMacchia, Lange, Lyons, Martin, Price: .NET Framework Security, Addison-Wesley Professional (2002) Li Gong: Inside Java 2 Platform Security, Addison-Wesley (1999)

Module: Project Seminar

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Seminar: Realization of an I&K Application System	Seminar	1
Exercise: Realization of an I&K Application System	Project	3
Module Responsible:		
Prof. Schupp		

Prerequisites:

None

Recommended Previous Knowledge:

- Bachelor in computer science
- Basic knowledge of a (preferably object-oriented) programming language
- Familiarity with basic concepts of the Internet

Learning Outcomes:

Knowledge: Concepts, techniques and tools of today's innovative information and communication systems. In addition, deepened knowledge required for conduction the project depending on the topic Methodical skills: Learning and applying object-oriented analysis, design and implementation System skills: Practically experiencing the difficulties of developing a non-trivial system

ECTS Credit Points:

6 Mode of Examination: Integral Examination Performance Record: Presentations, oral participation, submitted programs Workload in hours: Contact Time: 52, Self-study: 108

Course Unit: Project Seminar

Lecturer:

Prof. Schupp; Prof. Turau

Language:

English

Period:

Winter Semester

Contents:

- Object-oriented analysis, design and implementation
- An object-oriented programming language (typically: Java)
- Communication protocols
- Further software technologies as required for the project
- Conducting software development projects

Reading Resources:

Ian Sommerville: Software-Engineering. Addison-Wesley. (Grundlagen: Analyse, Design, Realisierung)
 J. Rumbaugh et al.: Objektorientiertes Modellieren und Entwerfen. Hanser, 1991. (Objektorientiertes OMT-Modell und Entwurfsprozeß)

Martin Fowler: UML Distilled, Applying the Standard Object Modeling Language. Addison Wesley, 1997. (Kompakte Einführung in die UML-Notation)

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns, Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Speciality Module II: Digital Signal Processing

Elective Modules

Module: Adaptive Compute Systems

Course Units: <u>Title</u> Adaptive Compute Systems

Module Responsible: Prof. Mayer-Lindenberg

Prerequisites:

None

Recommended Previous Knowledge:

Basic Knowledge on algorithms, digital systems

Helpful but not mandatory lectures: "Languages and Algorithms", "Digital Filter", "Signal Processors", "Pattern Recognition"

Learning Outcomes:

Knowledge: This lecture brings together various techniques and algorithms parametrically or in their structure to achieve a better performance in some sense. They cover neural networks, related adaptive filters, genetic optimization and machine learning.

ECTS Credit Points:

3 Mode of Examination: Integral Examination Performance Record: Written Examination Workload in hours: Contact Time: 28, Self-study: 62

Course Unit: Adaptive Compute Systems

Lecturer:

Prof. Mayer-Lindenberg

Language:

English

Period:

Winter Semester

Contents:

- natural neural systems
- perceptron and multilayer feed-forward networks
- Hopfield and Kohonen networks. Boltzmann machine, ART
- adaptive FIR and IIR filters and applications
- genetics and evolution in biology
- genetic algorithms
- applications to resource allocation, programming, artificial life and neural structures
- knowledge acquisition and representation

TypeDurationLecture2

- fuzzy logic and fuzzy data bases
- adaptive data bases
- hardware architectures for neural networks, and adaptive hardware.

Goos, Vorlesungen über Informatik Band IV, Springer-Verlag H.Ritter, T.Martinez, K.Schulten, Neuronale Netze K. Weicker, Evolutionäre Algorithmen, Teubner 2002

Module: Digital Video Signal Coding

Course Units: <u>Title</u> Digital Video Signal Goding

Module Responsible:

Prof. Grigat

Prerequisites:

None

Recommended Previous Knowledge:

Linear algebra, basic stochastics, binary arithmetics

Learning Outcomes:

- Knowledge: Broad theoretical and methodological foundations of data compression, advanced training on the example of MPEG-4 AVC
- Competece of Systems and Problem Solving: Understanding of problems, creative usage of scientific problem analysis and mathematical formalization (comparison of lossy and lossless coding schemes based on source models)

ECTS Credit Points:

2

Mode of Examination:

Integral Examination

Performance Record:

Written Examination

Workload in hours:

Contact Time: 28, Self-study: 62

Course Unit: International Logistics

Lecturer:

Prof. Grigat

Language:

English

Period:

Winter Semester

Contents:

- Information and entropy
- entropy coding (Huffman, arithmetic)
- lossless coding (DPCM, RLC, Ziv-Lempel, CALIC, JPEG-LS)
- quantisation (scalar, vector quantisation)
- transform coding (DCT, hybrid DCT)
- motion estimation
- subband coding

Reading Resources:

Salomon, Data Compression, the Complete Reference, Springer, 2000 Solari, Digital video and audio compression, McGraw-Hill, 1997 Tekalp, Digital Video Processing, Prentice Hall, 1995

Module: Digital Filters

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Digital Filters	Lecture	2
Module Responsible:		
Prof. Rohling		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Fundamentals in linear time-invariant (LTI) system theory		
Learning Outcomes:		
Knowledge: Overview of analysis and synthesis of digital filters, knowledge of technic design criteria	cal details and	general
Competence in methodology: Modelling and assessment of complex systems		
Competence in systems: System-oriented thinking		
ECTS Credit Doints:		
3		
S Mode of Examination:		
Integral Examination		
Performance Record:		
Written Examination		
Workload in hours:		
Contact Time: 28, Self-study: 62		

Course Unit: Digital Filters

- Lecturer: Prof. Rohling Language: English Period: Winter Semester Contents:
 - Introduction
 - Discrete-time Systems
 - o Transfer Function and Frequency Response
 - o Causality and Stability
 - o FIR and IIR Systems
 - o Signal Flow Graphs
 - Finite Impulse Response Digital Filters
 - o Transversal Structures
 - o Lattice Structures
 - Frequency Sampling Structures
 - o Symmetry Properties and Linear Phase
 - o Complementary Filters
 - Half-Band Filter

- FIR Filter Design
 - Least Squared Error Design
 - Windows for FIR Filter Design
 - Frequency-Sampling Design
 - Chebyshev Approximation
 - Design of Half-Band Filters
- Infinite Impulse Response Digital Filters
 - o Direct-Form Structures
 - o Cascade Form Strutures
 - o Parallel Form Structures
 - o Allpass Structures
 - Recursive Lattice Structures
- IIR Filter Design
 - o Bilinear Transformation Method
 - o Impulse Invariant Method
 - o Matched-Z Transformation Method
 - Frequency Transformations

Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Prentice Hall, 1989,

ISBN 0-13-216771-1

John G. Proakis, Dimitris G. Manolakis, Introduction to Digital Signal Processing, Macmillan Publishing, 1988, ISBN 0-02-396810-9

Module: Digital Signal Processors

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Digital Signal Processors	Lecture	2
Modue Responsible:		
Prof. Mayer-Lindenberg		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Knowledge on linear systems, digital filters, digital systems and microprocessors.		
Learning Outcomes:		
Knowledge about state-of-the-art DSP hardware Conpetence to design cost-effective DSP systems for given requirements		
ECTS Credit Points:		
3		
Mode of Examination:		
Integral Examination		
Performance Record:		
Written Examination		
Workload in hours:		
Contact Time: 28, Self-study: 68		

Course Unit: Digital Signal Processors

Lecturer:

Prof. Mayer-Lindenberg

Language:

Englisch

Period:

Summer Semester

Contents:

- of digital signal processing
- FIR filter processor design using a multiplier accumulator
- Integrated signal processors
- DSP system design, host ports, converters
- fast Fourier transform and filtering in the frequency domain
- Floating point DSP, FFT and fast FIR applications
- parallel DSP systems
- comparison to fast general purpose processors
- FPGA computing and DSP on FPGA
- special purpose processors for graphics and multimedia

Reading Resources:

F. Mayer-Lindenberg, Dedicated Digital Processors, Wiley 2004

J. G. Proakis, Digital Signal Processing, Prentice Hall 1996

Module: Digital Audio Signal Processing

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Digital Audio Signal Processing	Lecture	2
Module Responsible:		
Prof. Zölzer		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Signals and systems, Fourier, Laplace and Z transforms		
Learning Outcomes:		
Knowledge: Principles of digital audio signal processing with broad theoretical fund Competence of Methods: Theory driven applications of methods for advanced sign Competence of Problem Solving: Identification of problems and creative application strategies for solving problems.	amentals. al processing. n of scientific r	methods and
ECTS Credit Points:		
3		
Mode of Examination:		
Integral Examination		
Performance Record:		
Written Examination		
Workload in hours:		

Contact Time: 28, Self-study: 62

Course Unit: Digital Audio Signal Processing

Lecturer:

Prof. Zölzer

Language:

English

Period:

Winter Semester

Contents:

- Introduction (Studio Technology, Digital Transmission Systems, Storage Media, Audio Components at Home)
- Quantization (Signal Quantization, Dither, Noise Shaping, Number Representation)
- AD/DA Conversion (Methods, AD Converters, DA Converters, Audio Processing Systems, Digital Signal Processors, Digital Audio Interfaces, Single-Processor Systems, Multiprocessor Systems)
- Equalizers (Recursive Audio Filters, Nonrecursive Audio Filters, Multi-Complementary Filter Bank)
- Room Simulation (Early Reflections, Subsequent Reverberation, Approximation of Room Impulse Responses)
- Dynamic Range Control (Static Curve, Dynamic Behavior, Implementation, Realization Aspects)
- Sampling Rate Conversion (Synchronous Conversion, Asynchronous Conversion, Interpolation Methods)
- Data Compression (Lossless Data Compression, Lossy Data Compression, Psychoacoustics, ISO-MPEG1 Audio Coding)

- U. Zölzer, Digitale Audiosignalverarbeitung, 3. Aufl., B.G. Teubner, 2005. U. Zölzer (Ed), Digital Audio Effects, J. Wiley & Sons, 2002.

Module: Digital Image Processing

<u>Title</u>	<u>Type</u>	<u>Duration</u>
Digital Image Processing	Lecture	2
Exercise: Digital Image Processing	Exercise	1
Module Responsible:		

Prof. Grigat

Prerequisites:

None

Recommended Previous Knowledge:

LTI system theory of one-dimensional signals (sampling theory, interpolation, Fourier transform, linear timeinvariant systems), linear algebra (Eigenvalue decomposition), basic stochastics (expectation values and samples)

Learning Outcomes:

Knowledge: Broad theoretical and methodological foundations of imaging capture and processing algorithms, in depth knowledge of digital filtering of image signals. In-depth knowledge of interdisciplinary relations and embedding the field into the scientific and social environment (system theory, filter, physiology, perception psychology)

Competence of Methods: Theory-driven application of very demanding methods and procedures (multidimensional sampling theory, untary transforms, characterization of sensor and display) Competence of Problem Solving: Understanding of problems, creative usage of scientific problem analysis and mathematical formalization (applications to mobile phone cameras)

Competence of Systems: Quantitative Comparison of competing methodology in multidimensional decision spaces (spatio-temporal signal processing, image deficiencies as an interrelation of perception and signal theory)

ECTS Credit Points:

4

Mode of Examination:

Integral Examination

Performance Record:

Written examination

Workload in hours:

Contact Time: 42, Self-study: 78

Course Unit: Digital Image Processing

Lecturer:

Prof. Grigat

Language:

English

Period:

Winter Semester

Contents:

- Perception of luminosity and color
- color spaces
- multidimensional sampling in space and time
- decimation, de-interlacing

- large area and edge flicker
- apertures of image sensors and displays in space and time
- image transforms
- image filtering
- edge operators
- histogram equalisation
- morphological operators
- homomorphic filtering
- hough transform
- geometric moments

Pratt, Digital Image Processing, Wiley, 2001 Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989 Jähne, Haußecker, Computer Vision and Applications, Academic Press, 2000

Speciality Module III: Networking

Elective Modules

Module: Optical Communications		
Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Optical Communications	Lecture	2
Exercise: Optical Communications	Exercise	1
Module Responsible:		
Prof. Brinkmeyer		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Fundamentals of electromagnetic theory, communications, waveguide theory, and e	electronic de [,]	vices
Learning Outcomes:		
Knowledge: Understanding basic principles of optical communications Competencies: Abilities of designing and evaluating optical transmission systems		
ECTS Credit Points:		
4		
Mode of Examination:		
Integral Examination		
Performance Record:		
Oral Examination		
Workload in hours:		
Contact Time: 42, Self-study: 78		

Course Unit: Optical Communications

- Lecturer: Prof. Brinkmeyer Language: English Period: Winter Semester Contents:
 - Review of optical waveguide fundamentals
 - Properties of silica optical fiber relevant in communications
 - Passive components in fiber optics
 - Review of photodiode and LED fundamentals
 - Noise in photodetectors
 - Laserdiodes
 - Optical fiber amplifiers
 - Nonlinearities in optical fibers
 - Optical fiber systems

G.P. Agrawal: Fiber-optic communication system. John Wiley&Sons, 2002
J. Gowar: Optical communication systems, Prentice-Hall, 1997
I.P. Kaminov, L. Koch (ed.): Optical Fiber Telecommunications, vol. IIIa, IIIb, Academic Press 1997
E. Voges, K. Petermann (ed.): Optische Kommunikationstechnik, Springer, 2002

Module: Microwave Engineering

<u>Title</u>	<u>Type</u>	<u>Duration</u>
Microwave Engineering	Lecture	2
Exercise: Microwave Engineering	Exercise	1

Module Responsible:

Prof. Jacob

Prerequisites:

Course Units:

None

Recommended Previous Knowledge:

The lecture is based on fundamentals of communication engineering, semiconductor devices and circuits, and wave propagation.

Learning Outcomes:

Knowledge: In-depth Introduction to the Foundations of Microwave Engineering Competence of Methods: Dedicated Application of the Theoretical Foundations to the Analysis of Selected Practical Problems

ECTS Credit Points:

4

Mode of Examination:

Integral Examination

Performance Record:

Written Examination

Workload in hours:

Contact Time: 42, Self-study: 78

Course Unit: Microwave Engineering

Lecturer:

Prof. Jacob

Language:

English

Period:

Winter Semester

Contents:

- Antennas: Analysis Characteristics Realizations;
- Radio Wave Propagation
- Transmitter: Power Generation with Vacuum Tubes and Transistors;
- Receiver: Preamplifier Heterodyning Noise;
- Selected System Applications

Reading Resources:

Voges, E.: Hochfrequenztechnik, Hüthig, 2004 Jacob, A.: Vorlesungsskript (deutsch)

Module: Communication Networks I: Principles

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Communication Networks I	Lecture	2
Exercise: Communication Networks I	Exercise	1

Module Responsible:

Prof. Timm-Giel

Prerequisites:

None

Recommended Previous Knowledge:

Probability theory fundamentals, Poisson process

Learning Outcomes:

- After successful completion of this course students should be able to
- to identify and to explain principles and generic problems of communication networks and protocols
- to explain solution methods of the different problem classes
- to develop solutions for problem statements similar to the generic paradigms
- to participate in English based communication during the lesson

ECTS Credit Points:

4 Mode of Examination: Integral Examination Performance Record: Written Examination Workload in hours: Contact Time: 42, Self-study: 78

Course Unit: Communication Networks I

Lecturer: Prof. Timm-Giel Language: English Period: Winter Semester Contents:

- Introduction to Communication Networks
- OSI Model
- Basic Principles:
 - Error handling (detection, correction, repeat request)
 - Flow control (window technique, channel utilization)
 - Routing (shortest path routing, bifurcated routing, broadcast routing)
 - o Multiple access protocols (TDMA, reservation, token, ALOHA, CSMA, CSMA/CD)
- Sample Networks
 - o TCP/IP and the Internet
 - o WLAN
 - Mobile Communication Networks

A.S. Tanenbaum: Computer Networks, 4th ed., Pearson Education International (2003)A.S. Tanenbaum: Computernetzwerke, 4.Aufl., Pearson Studium (2003)

J. Schiller, Mobile Communication Networks

M. Bossert, M. Breitbach, Digitale Netze, Teubner Leipzig (1999)

Larry L. Peterson & Bruce S.Davie: Computer Networks, Morgan Kaufmann Publisher (2000) James F. Kurose & Keith W. Ross: Computer Networking, Pearson/Addison Wesley (2005)

Module: Queuing Theory for Communication Networks

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Queuing Theory for Communication Networks	Lecture	2
Exercise: Queuing Theory for Communication Networks	Exercise	1
Module Responsible:		
Prof. Timm-Giel		
Prerequisites:		

None

Recommended Previous Knowledge:

Probability Theory

Learning Outcomes:

After successful completion of this course students should be able to

- to identify and to explain generic problems and solution approaches for queueing problems in communication networks
- to explain solution methods of the different problem classes
- to develop solutions for problem statements similar to the generic paradigms
- to do queueing systems based modelling and problem solving
- to understand the implications of abstraction steps and trade-offs
- to participate in English based communication during the lesson

ECTS Credit Points:

4 Mode of Examination: Integral Examination Performance Record: Written Examination Workload in hours: Contact Time: 42, Self-study: 78

Course Unit: Queuing Theory for Communication Networks

Lecturer:

Prof. Timm-Giel

Language:

English

Period:

Winter Semester

Contents:

- Random variables, stochastic processes, Markow chains
- Poisson process
- Deterministic queueing model
- Birth-death process
- Theorem of Little
- Systems with multiple servers
- M/GI/1 system
- Static and dynamic priorities

- Token method
- Networks of queues

P.G. Harrison, N.M. Patel: Performance Modelling of Communication Networks and Computer Architectures, Addison Wesley (1993)

Module: Analysis and Structure of Communication Networks

Course Units:

<u>Title</u>	<u>Type</u>	<u>Duration</u>
Communication Networks II	Lecture	2
Modern Methods for Modelling of Communicaton Networks	Labor	2
Exercise: Communication Networks II	Exercise	1
Module Responsible:		

Prof. Timm-Giel

Prerequisites:

None

Recommended Previous Knowledge:

Understanding of basic principles of communication networks and their protocols as presented in "Communication Networks I"

Learning Outcomes:

- After successful completion of this course students should be able to
- to explain principles of discrete event simulations for communication networks
- to explain principles of network planning
- to evaluate network performance using event discrete simulation and network planning tools
- to evaluate the reliability of the simulation results, e.g. using confidence intervals
- to develop solutions for problem statements similar to the generic paradigms
- to participate in English based communication during the lesson

ECTS Credit Points:

6 Mode of Examination: Integral Examination Performance Record: Written Examination Workload in hours: Contact Time: 56, Self-study: 124

Course Unit: Communication Networks II: Topical Networking Technologies

Lecturer: Prof. Timm-Giel Language: Englisch Period: Summer Semester Contents: Discrete Event Simulations • Bandom Number (

- Random Number Generators
- Statistical EvaluationSimulation Systems
- Simulation System

Network Planning

• Principles of Network Planning and Optimization

- Exact Methods, e.g. Simplex algorithm, Branch and Bound
- Heuristics, e.g. genetic algorithms, simulated annealing
- Examples

P. Bratley, B.L. Fox, L.E. Schrage: A Guide to Simulation. Springer 1983, 1987

B.P. Zeigler, H. Praehofer, T.G. Kim: Theory of Modeling and Simulation, Academic Press, 2000

R.Y. Rubinstein, B. Melamed: Modern Simulation and Modeling. Wiley Series in Probability and Statistics 1998

Labor Unit: Modern Methods for Modelling of Communication Networks

Lecturer:

Dr. Kreft

Language:

Englisch

Period:

Summer Semester

Contents:

- Learning the capabilities and the programming of an event-driven simulator
- Definition and modeling of specific problems in the area of communication networks
- Solving the problems by using discrete event simulators and MATLAB
- Understanding of network planning as an optimization problem
- Solving of discrete or mixed integer linear optimization problems

Reading Resources:

Linear Programming FAQs <u>http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html</u>

Module: Introduction to Antenna Theory

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Introduction to Antenna Theory	Lecture	2
Exercise: Introduction to Antenna Theory	Exercise	1
Module Responsible:		
Dr. Kreft		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Fundamentals of Maxwell's theory, transmission line theory		
Learning Outcomes:		
Knowledge: Detailed Knowledge on Antenna Theory and Applications Competence of Methods: Analysis of Antennas		
ECTS Credit Points:		
4		
Mode of Examination:		
Integral Examination		
Performance Record:		
Oral Examination		
Workload in hours:		
Contact Time: 48, Self-study: 78		

Course Unit: Introduction to Antenna Theory

Lecturer:

Dr. Höft

Language:

Englisch

Period:

Summer Semester

Contents:

- Method of analysis: vector potential, duality, equivalent sources, image theory, Huygens principle
- Analysis of basic structures: linear antennas, aperture antennas, array antennas
- Characterising quantities: radiation pattern, gain, radiation resistance, reciprocity, noise
- Transmission of radio and microwaves: bounded and free-space transmission
- Examples of antennas: transmit and receive anteannas for EMC, mobile services, strongly focussing antennas, ground station antennas, satellite antennas

Reading Resources:

R.E. Collin, Antennas and Radiowave Propagation, McGraw-Hill, New York 1985

Module: Mobile Communications

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Mobile Communications	Lecture	2
Exercise: Mobile Communications	Exercise	1
Module Responsible:		
Prof. Rohling		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Fundamentals in linear time-invariant (LTI) system theory		
Learning Outcomes:		
Knowledge: Overview of existing and new mobile communication systems, knowled general design criteria Competence in methodology: Modelling and assessment of complex systems	lge of technica	I details and
Competence in systems: System-oriented thinking		
Soft skills: Ability of learning autonomously and efficiently, communication in Engli	sh	
ECTS Credit Points:		
4		
Mode of Examination:		
Integral Examination		
Performance Record:		
Written Examination		
Workload in hours:		
Contact Time: 42, Self-study: 78		

Course Unit: Mobile Communications

Lecturer: Prof. Rohling Language: Englisch Period: Summer Semester Contents:

- Mobile radio channels: Properties, deterministic and stochastic channel models
- Digital transmission techniques: single and multicarrier transmission, modulation schemes
- Channel estimation and equalization techniques
- Channel coding methods which are suitable for radio channels
- Diversity reception and combining techniques
- Multiple access schemes for single and multicarrier transmission
- Transmission protocols and aspects of cellular networks
- A comprehensive comparison of the transmission technique used in current systems like GSM, HIPERLAN, and DAB

Reading Resources:

John G. Proakis, Digital Communications (3rd Edition), McGraw-Hill, 1995 ISBN 0-07-051726-6

Module: Network Security

Course Units:		
<u>Title</u>	<u>Type</u>	<u>Duration</u>
Network Security	Lecture	2
Exercise: Network Security	Exercise	1
Module Responsible:		
Prof. Gollmann		
Prerequisites:		
None		
Recommended Previous Knowledge:		
Discrete mathematics, computer networks (TCP/IP)		
Learning Outcomes: Knowledge: Fundametal methods of modern cryptography; currently deployed standard network security protocols and mechanisms		
ECTS Credit Points:		
4		
Mode of Examination:		
Integral Examination		
Performance Record:		
Written Examination		
Workload in hours:		
Contact Time: 42, Self-study: 78		

Course Unit: Network Security

Lecturer: Prof. Gollmann Language: English Period: Summer Semester Contents:

- Security objectives
- Cryptographic services and mechanisms
- Hash functions
- Digital signatures: RSA and DSA
- Encryption algorithms: DES, AES, block cipher modes, stream ciphers
- Cryptanalysis, differential power analysis
- Diffie-Hellman key exchange, Kerberos
- IPsec protocols, mobile IPv6·
- SSL/TLS
- GSM/UMTS security protocols
- Firewalls and Intrusion Detection Systems
- Testing network security

A. Menezes, P. van Oorschot, S. Vanstone: Handbook of Applied Cryptography, CRC Press (1997) D. Gollmann: Computer Security (2. Auflage), Wiley (2006)

V. Niemi, K. Nyberg: UMTS Security, Wiley (2003)

Assignment and Thesis

Compulsory Modules

Module: Project Work

Module Responsible:

A professor of the TUHH

Prerequisites:

none

Recommended Previous Knowledge:

All knowledge, skills and competencies that are taught and developed in the first year.

Learning Outcomes:

The students are able to work scientifically correct. They have the ability to complete and document research on a subject matter assignment with scientific methods independently and within a given timeframe. The students are able to develop solutions for technical problems on the basis of pure science with regards to safety, environmental, ethical and economic aspects.

ECTS Credit Points:

15

Mode of Examination: Integral Examination Performance Record: Project work and oral exam Workload:

Self-study: 450

Module: Master Thesis

Module Responsible:

A professor of the TUHH

Prerequisites:

Achievements of at least 80 ECTS from the the curriculum

Recommended Previous Knowledge:

All knowledge, skills and competencies that are taught and developed in semesters 1-3.

Learning Outcomes:

The graduates have the necessary competencies for correct scientific work and are able to write profound research papers. They have the ability to complete research on a pure science subject matter with sophisticated scientific methods independently and within a given timeframe. The students are able to analyze and evaluate possible solutions for the given problem and can put their work into the context of current research.

ECTS Credit Points:

30

Mode of Examination:

Integral Examination

Performance Record:

Thesis and Presentation **Workload:** Self-study: 900