

Modulhandbuch

Elektrotechnik

Wintersemester 2014

Inhaltsverzeichnis

Inhaltsverzeichnis	2
Studiengangsbeschreibung	3
Fachmodule der Kernqualifikation	4
Modul: Prozedurale Programmierung	4
Modul: Physik für Ingenieure	7
Modul: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder	9
Modul: Grundlagen der Betriebswirtschaftslehre	11
Modul: Mathematik I	14
Modul: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente	17
Modul: Objektorientierte Programmierung, Algorithmen und Datenstrukturen	19
Modul: Nichttechnische Ergänzungskurse im Bachelor	21
Modul: Werkstoffe der Elektrotechnik	44
Modul: Mathematik II	46
Modul: Elektrotechnik III: Netzwerktheorie und Transienten	
Modul: Technische Informatik	
Modul: Messtechnik und Messdatenverarbeitung	
Modul: Mathematik III	
Modul: Theoretische Elektrotechnik I: Zeitunabhängige Felder	
Modul: Signale und Systeme	
Modul: Elektrotechnik IV: Leitungen und Forschungsseminar	
Modul: Elektrotechnisches Projektpraktikum	
Modul: Mathematik IV	
Modul: Theoretische Elektrotechnik II: Zeitabhängige Felder	
Modul: Technische Mechanik I	
Modul: Numerische Mathematik I	75
Modul: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden	
Modul: Elektronische Bauelemente	
Modul: Grundlagen der Regelungstechnik	81
Modul: Computernetworks and Internet Security	84
Modul: Technische Mechanik II	
Modul: Elektrische Maschinen	
Modul: Einführung in Medizintechnische Systeme	
Modul: Algebraische Methoden in der Regelungstechnik	92
Modul: Löser für schwachbesetzte lineare Gleichungssysteme	94
Modul: Halbleiterschaltungstechnik	96
Thesis	98
Modul: Bachelorarbeit	98

Studiengangsbeschreibung

Inhalt:

Die Elektrotechnik ist eine der "klassischen Ingenieurwissenschaften" und einer der wesentlichen Motoren des nationalen und internationalen technischen Fortschritts in den letzten Jahrzehnten. Der Bachelor-Studiengang Elektrotechnik bereitet die Studierenden auf einen Berufseinstieg in diese vielfältige, stets im Wandel begriffene Branche vor. Die curricularen Inhalte des Studiengangs gliedern sich in sieben Fächergruppen:

- Mathematisch-naturwissenschaftliche Grundlagen (36 ECTS)
- Elektrotechnische Grundlagen (24 ECTS)
- Informationstechnische und allgemeine ingenieurwissenschaftliche Grundlagen (30 ECTS)
- Kernfächer der Elektrotechnik (48 ECTS)
- Wahlpflichtfächer der Elektrotechnik (18 ECTS)
- Übergreifende nichttechnische Inhalte (12 ECTS)
- Bachelor-Arbeit (12 ECTS)

Der Bachelor-Studiengang Elektrotechnik ist eher national als international ausgeriochtet. Bis auf wenige Ausnahmen sind Vorlesungen, Übungen, Praktika, Projekte und Prüfungen auf Deutsch.

Fachmodule der Kernqualifikation

Modul: Prozedurale Programmierung

Lehrveranstaltungen:

<u>Titel</u>	<u>Тур</u>	SWS
Prozedurale Programmierung	Vorlesung	1
Prozedurale Programmierung	Gruppenübung	1
Prozedurale Programmierung	Laborpraktikum	2

Modulverantwortlich:

Prof. Siegfried Rump

Zulassungsvoraussetzung:

Keine

Empfohlene Vorkenntnisse:

Elementare Handhabung eines PC Elementare Mathematikkenntnisse

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden erwerben folgendes Wissen:

- Sie kennen elementare Sprachelemente der Programmiersprache C. Sie kennen die grundlegenden Datentypen und wissen um ihre Einsatzgebiete.
- Sie haben ein Verständnis davon, was die Aufgaben eines Compilers, des Präprozessors und der Entwicklungsumgebung sind und wie diese interagieren.
- · Sie beherrschen die Einbindung und Verwendung externer Programm-Bibliotheken zur Erweiterung des Funktionsumfangs.
- Sie wissen, wie man Header-Dateien verwendet und Funktionsschnittstellen festlegt, um größere Programmierprojekte kreieren zu können.
- Sie haben ein Verständnis dafür, wie das implementierte Programm mit dem Betriebssystem interagiert. Dies befähigt Sie dazu,
 Programme zu entwickeln, welche Eingaben des Benutzers, Betriebseingaben oder auch entsprechende Dateien verarbeiten und
 gewünschte Ausgaben erzeugen.
- Sie haben mehrere Herangehensweisen zur Implementierung häufig verwendeter Algorithmen gelernt.

Fertigkeiten:

- Die Studierenden sind in der Lage, die Komplexität eines Algorithmus zu bewerten und eine effiziente Implementierung vorzunehmen.
- Die Studierenden können Algorithmen für eine Vielzahl von Funktionalitäten modellieren und programmieren. Zudem können Sie die Implementierung an eine vorgegebene API anpassen.

Personale Kompetenzen:

Sozialkompetenz:

Die Studierenden erwerben folgende Kompetenzen:

- Sie k\u00f6nnen in Kleingruppen Aufgaben gemeinsam l\u00f6sen, Programmfehler analysieren und beheben und ihr erzieltes Ergebnis gemeinsam pr\u00e4sentieren.
- · Sie können sich Sachverhalte direkt am Rechner durch einfaches Ausprobieren gegenseitig klar machen.
- Sie können in Kleingruppen gemeinsam eine Projektidee und -planung erarbeiten.
- Sie müssen den betreuenden Tutoren ihre eigenen Lösungsansätze verständlich kommunizieren und ihre Programme präsentieren.

Selbstständigkeit:

- Die Studierenden müssen in Einzeltestaten sowie einer abschließenden Prüfung ihre Programmierfertigkeiten unter Beweis stellen und selbständig ihr erlerntes Wissen zur Lösung neuer Aufgabenstellungen anwenden.
- Die Studierenden haben die Möglichkeit, ihre erlernten Fähigkeiten beim Lösen einer Vielzahl von Präsenzaufgaben zu überprüfen.
- Zur effizienten Bearbeitung der Aufgaben des Praktikums teilen die Studierenden innerhalb ihrer Gruppen die Übungsaufgaben auf.
 Jeder Studierende muss zunächst selbständig eine Teilaufgabe lösen.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht

Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht

Mechatronik: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht

Dozenten:

Prof. Siegfried Rump

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- elementare Datentypen (Integer, Gleitpunktformat, ASCII-Zeichen) und ihre Abhängigkeiten von der Architektur
- höhere Datentypen (Zeiger, Arrays, Strings, Strukturen, Listen)
- Operatoren (arithmetische Operationen, logische Operationen, Bit-Operationen)
- Kontrollflussstrukturen (bedingte Verzweigung, Schleifen, Sprünge)
- Präprozessor-Direktiven (Makros, bedingte Kompilierung, modulares Design)
- Funktionen (Funktionsdefinition/-interface, Rekursion, "call by value" versus "call by reference", Funktionszeiger)
- essentielle Standard-Bibliotheken und -Funktionen (stdio.h, stdlib.h, math.h, string.h, time.h)
- Dateikonzept, Streams
- einfache Algorithmen (Sortierfunktionen, Reihenentwicklung, gleichverteilte Permutation)
- Übungsprogramme zur Vertiefung der Programmierkenntnisse

Literatur:

Kernighan, Brian W (Ritchie, Dennis M.;)

The C programming language

ISBN: 9780131103702

Upper Saddle River, NJ [u.a.]: Prentice Hall PTR, 2009

Sedgewick, Robert Algorithms in C ISBN: 0201316633

Reading, Mass. [u.a.]: Addison-Wesley, 2007

Kaiser, Ulrich (Kecher, Christoph.;)

C/C++: Von den Grundlagen zur professionellen Programmierung

ISBN: 9783898428392 Bonn : Galileo Press, 2010

Wolf, Jürgen

C von A bis Z: das umfassende Handbuch

ISBN: 3836214113 Bonn : Galileo Press, 2009

Lehrveranstaltung: Prozedurale Programmierung (Übung)

Dozenten:

Prof. Siegfried Rump

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- elementare Datentypen (Integer, Gleitpunktformat, ASCII-Zeichen) und ihre Abhängigkeiten von der Architektur
- höhere Datentypen (Zeiger, Arrays, Strings, Strukturen, Listen)
- Operatoren (arithmetische Operationen, logische Operationen, Bit-Operationen)
- Kontrollflussstrukturen (bedingte Verzweigung, Schleifen, Sprünge)
- Präprozessor-Direktiven (Makros, bedingte Kompilierung, modulares Design)
- Funktionen (Funktionsdefinition/-interface, Rekursion, "call by value" versus "call by reference", Funktionszeiger)
- essentielle Standard-Bibliotheken und -Funktionen (stdio.h, stdlib.h, math.h, string.h, time.h)
- Dateikonzept, Streams
- einfache Algorithmen (Sortierfunktionen, Reihenentwicklung, gleichverteilte Permutation)
- Übungsprogramme zur Vertiefung der Programmierkenntnisse

Literatur:

Kernighan, Brian W (Ritchie, Dennis M.;)

The C programming language

ISBN: 9780131103702

Upper Saddle River, NJ [u.a.]: Prentice Hall PTR, 2009

Sedgewick, Robert Algorithms in C

ISBN: 0201316633 Reading, Mass. [u.a.]: Addison-Wesley, 2007

Kaiser, Ulrich (Kecher, Christoph.;)

C/C++: Von den Grundlagen zur professionellen Programmierung

ISBN: 9783898428392 Bonn : Galileo Press, 2010

Wolf, Jürgen

C von A bis Z : das umfassende Handbuch

ISBN: 3836214113 Bonn : Galileo Press, 2009

Lehrveranstaltung: Prozedurale Programmierung (Laborpraktikum)

Dozenten:

Prof. Siegfried Rump

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- elementare Datentypen (Integer, Gleitpunktformat, ASCII-Zeichen) und ihre Abhängigkeiten von der Architektur
- höhere Datentypen (Zeiger, Arrays, Strings, Strukturen, Listen)
- Operatoren (arithmetische Operationen, logische Operationen, Bit-Operationen)
- Kontrollflussstrukturen (bedingte Verzweigung, Schleifen, Sprünge)
- Präprozessor-Direktiven (Makros, bedingte Kompilierung, modulares Design)
- Funktionen (Funktionsdefinition/-interface, Rekursion, "call by value" versus "call by reference", Funktionszeiger)
- essentielle Standard-Bibliotheken und -Funktionen (stdio.h, stdlib.h, math.h, string.h, time.h)
- Dateikonzept, Streams
- einfache Algorithmen (Sortierfunktionen, Reihenentwicklung, gleichverteilte Permutation)
- Übungsprogramme zur Vertiefung der Programmierkenntnisse

Literatur:

Kernighan, Brian W (Ritchie, Dennis M.;)

The C programming language ISBN: 9780131103702

Upper Saddle River, NJ [u.a.]: Prentice Hall PTR, 2009

Sedgewick, Robert

Algorithms in C ISBN: 0201316633

Reading, Mass. [u.a.]: Addison-Wesley, 2007

Kaiser, Ulrich (Kecher, Christoph.;)

C/C++: Von den Grundlagen zur professionellen Programmierung

ISBN: 9783898428392 Bonn: Galileo Press, 2010

Wolf, Jürgen

C von A bis Z : das umfassende Handbuch

ISBN: 3836214113 Bonn : Galileo Press, 2009

Lehrveranstaltungen:

<u>Titel</u>	<u>Typ</u>	<u>sws</u>
Physik für Ingenieure	Vorlesung	2
Physik für Ingenieure (Übung)	Gruppenübung	1
Physik-Praktikum für ET/IIW-Ingenieure	Laborpraktikum	1

Modulverantwortlich:

Prof. Manfred Eich

Zulassungsvoraussetzung:

Allgemeine Hochschulreife

Empfohlene Vorkenntnisse:

- Mathematik auf Abiturniveau
- · Physik auf Abiturniveau

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können physikalische Grundbegriffe sowie grundlegende Gesetzmäßigkeiten insbesondere der Mechanik, der Schwingungen und Wellen sowie der Optik erklären.

Sie können einen Bezug zu technischen Problemstellungen herstellen.

Fertigkeiten:

Studierende können physikalische Problemstellungen mathematisch beschreiben und im Rahmen der bereits erlernten mathematischen Fertigkeiten lösen.

Studierende können experimentelle Resultate in Versuchsdokumentationen aussagekräftig protokollieren und diskutieren.

Personale Kompetenzen:

Sozialkompetenz:

Die Studierenden können in Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Übungen und Praktika).

Selbstständigkeit:

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu stellen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen wie klausurnahe Aufgaben effektiv überprüfen. Sie können ihr Wissen mit den Inhalten anderer Lehrveranstaltungen verknüpfen.

Leistungspunkte:

6 LP

Studienleistung:

Klausu

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht

Lehrveranstaltung: Physik für Ingenieure (Vorlesung)

Dozenten:

Prof. Manfred Eich

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- Kinematik: ein-, zwei- und dreidimensionale Bewegung, gleichförmig, beschleunigt, Kreisbewegung
- Dynamik: Masse, Impuls, Kraft, Newton'sche Axiome, Inertialsystem, Beispiele für Kräfte, Impulserhaltung, System mit veränderlicher Masse.
- Gravitation: Gravitationsgesetz, Cavendishexperiment, Kepler'sche Gesetze.
- · Arbeit und Energie: Arbeit, Leistung, kinetische und potentielle Energie.
- Energieerhaltung: Erhaltung der mechanischen Energie, Stöße, Potentialdiagramme.
- Rotationsbewegung: Drehimpuls, Drallsatz, Erhaltung des Drehimpulses, Rotation eines starren K\u00f6rpers, Tr\u00e4gheitsmoment, Massenmittelpunkt,
- Harmonische Schwingungen: Definition, lineares Kraftgesetz, Feder-Masse-System, Fadenpendel, Physikalisches Pendel, energetische Betrachtung, gedämpfte Schwingung, erzwungene Schwingung.

- Elemente der relativistischen Mechanik: Galilei-Transformation, Konstanz der Lichtgeschwindigkeit, Lorentz-Transformation von Ort, Zeit, Geschwindigkeit, relativistische Masse, relativistische Energie.
- Schwingungen und Wellen
- Optik (Geometrische Optik, Wellenoptik, Materiewellen)
- Grundzüge der Quantenmechanik

Literatur:

- Giancoli, Physics for Scientists & Engineers Vol. 1, 2, Pearson
- · Halliday/Resnik/Walker, Fundamentals of physics, Wiley
- K. Cummings, P. Laws, E. Redish, and P. Cooney ("CLRC"), Understanding Physics, Wiley
- Gerthsen/Vogel, Physik, Springer Verlag
- Hering/Martin/Stohrer, Physik für Ingenieure, VDI-Verlag

Lehrveranstaltung: Physik für Ingenieure (Übung) (Übung)

Dozenten:

Prof. Manfred Eich

Sprachen:

DE

Zeitraum:

WS

Inhalt:

siehe Vorlesung Physik für Ingenieure

Literatur:

see lecture Physics for Engineers

Lehrveranstaltung: Physik-Praktikum für ET/IIW-Ingenieure (Laborpraktikum)

Dozenten:

Prof. Wolfgang Hansen

Sprachen:

DE/EN

Zeitraum:

SS

Inhalt:

Im Physikpraktikum wird eine Reihe von Experimenten zu physikalischen Phänomenen aus der Mechanik, dem Gebiet der Schwingungen und Wellen, der Thermodynamik, der Elektrizitätslehre und der Optik unter Anleitung einer Lehrperson durchgeführt. Die Experimente sind Teil der Physikausbildung im Rahmen der Vorlesung "Physik für TUHH-ET Ingenieure".

Über die Vermittlung grundlegender physikalischer Zusammenhänge hinaus sollen Fertigkeiten zur Vorbereitung und Durchführung von Messungen physikalischer Größen, der Gebrauch von physikalischen Messgeräten, die Analyse der Resultate und die Erstellung eines Berichts über die Messergebnisse erworben werden.

Literatur:

Zu den Versuchen gibt es individuelle Versuchsanleitungen, die vor der Versuchsdurchführung ausgegeben werden. Zum Teil müssen die zur Versuchsdurchführung notwendigen physikalischen Hintergründe selbstständig erarbeitet werden, wozu die zur Vorlesung "Physik für TUHH-ET Ingenieure" angegebene Literatur gut geeignet ist.

Lehrveranstaltungen:

 Titel
 Typ
 SWS

 Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder
 Vorlesung
 3

 Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder
 Gruppenübung
 2

Modulverantwortlich:

Prof. Manfred Kasper

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden kennen die grundlegenden Theorien, Zusammenhänge und Methoden der Gleichstromnetzwerke, sowie elektrischer und magnetischer Felder. Hierzu gehören insbesondere:

- die Kirchhoffschen Regeln,
- · das Ohmsche Gesetz.
- Methoden zur Vereinfachung und Analyse von Gleichstromnetzwerken,
- die Beschreibung elektrischer und magnetischer Felder mit vektoriellen Feldgrößen,
- grundlegende Materialbeziehungen,
- das Gauss'sche Gesetz,
- das Ampère'sche Gesetz,
- das Induktionsgesetz,
- die Maxwell'schen Gleichungen in Integralform,
- die Begriffe und Definition des Widerstands, der Kapazität und der Induktivität.

Fertigkeiten:

Die Studierenden können die Beziehungen zwischen Strömen und Spannungen in einfachen Gleichstromnetzwerken aufstellen, die Größen berechnen und Schaltungen dimensionieren. Sie können die Grundgesetze des elektrischen und magnetischen Felds anwenden und die Beziehung zwischen Feldgrößen aufstellen und auswerten. Widerstände, Kapazitäten und Induktivitäten einfacher Anordnungen können berechnet werden.

Personale Kompetenzen:

Sozialkompetenz

Die Studierenden sind in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten. Sie können Konzepte erklären und anhand von Beispielen das eigene oder das Verständnis anderer überprüfen und vertiefen.

Selbstständigkeit:

Die Studierenden sind in der Lage, sich Teilbereiche des Fachgebietes anhand der Grundlagenliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. Die Studierenden entwickeln die Ausdauer, um auch schwierigere Problemstellungen zu bearbeiten.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

 $\label{local-algement} \textbf{Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht}$

Elektrotechnik: Kernqualifikation: Pflicht

Elektrotechnik myTrack: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht

Mechatronik: Kernqualifikation: Pflicht

Lehrveranstaltung: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder (Vorlesung)

Dozenten:

Prof. Manfred Kasper

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- 1. Grundlagen der Widerstandsnetzwerke
- 2. Vereinfachung von Widerstandsnetzwerken
- Netzwerkanalyse
- 4. Elektrostatisches Feld in isolierenden Medien
- 5. Das elektrostatische Feld
- 6. Stationäre Ströme in leitfähigen Medien
- 7. Statisches magnetisches Feld
- 8. Induktion und zeitabhängige Felder

Literatur:

- 1. M. Kasper, Skript zur Vorlesung Elektrotechnik 1, 2013
- 2. M. Albach: Grundlagen der Elektrotechnik 1, Pearson Education, 2004
- 3. F. Moeller, H. Frohne, K.H. Löcherer, H. Müller: Grundlagen der Elektrotechnik, Teubner, 2005
- 4. A. R. Hambley: Electrical Engineering, Principles and Applications, Pearson Education, 2008

Lehrveranstaltung: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder (Übung)

Dozenten:

Prof. Manfred Kasper

Sprachen:

Zeitraum:

WS

Inhalt:

- 1. Spannungs- und Stromquellen
- 2. Ohmsches Gesetz
- 3. Kirchhoffsche Regeln, Strom- und Spannungsteiler
- 4. Ersatzquellen
- 5. Netzwerkanalyse
- 6. Superpositionsprinzip
- 7. Elektrisches Feld, Coulomb'sches Gesetz
- 8. Stationäre Ströme, Widerstandsberechnung
- 9. Elektrische Flussdichte, Kapazitätsberechnung
- Stetigkeitsbedingungen, Spannung am Kondensator
 Ampèresches Gesetz, Magnetischer Kreis
- 12. Kräfte im Magnetfeld
- 13. Induktion, Selbst- und Gegeninduktivität

Literatur:

- 1. Übungsaufgaben zur Elektrotechnik 1, TUHH, 2013
- 2. Ch. Kautz: Tutorien zur Elektrotechnik, Pearson Studium, 2010

Modul: Grundlagen der Betriebswirtschaftslehre

Lehrveranstaltungen:

<u>Titel</u>	Тур	<u>SWS</u>
Grundlagen der Betriebswirtschaftslehre	Vorlesung	4
Projekt Entrepreneurship	Problemorientierte Lehrveranstaltung	2

Modulverantwortlich:

Prof. Kathrin Fischer

Zulassungsvoraussetzung:

Keine

Empfohlene Vorkenntnisse:

Schulkenntnisse in Mathematik und Wirtschaft

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können...

- grundlegende Begriffe und Kategorien aus dem Bereich Wirtschaft und Management benennen und erklären
- grundlegende Aspekte wettbewerblichen Unternehmertums beschreiben (Betrieb und Unternehmung, betrieblicher Zielbildungsprozess)
- wesentliche betriebliche Funktionen erläutern, insb. Funktionen der Wertschöpfungskette (z.B. Produktion und Beschaffung, Innovationsmanagement, Absatz und Marketing) sowie Querschnittsfunktionen (z.B. Organisation, Personalmanagement, Supply Chain Management, Informationsmanagement) und die wesentlichen Aspekte von Entrepreneurship-Projekten benennen
- Grundlagen der Unternehmensplanung (Entscheidungstheorie, Planung und Kontrolle) wie auch spezielle Planungsaufgaben (z.B. Projektplanung, Investition und Finanzierung) erläutern
- Grundlagen des Rechnungswesens erklären (Buchführung, Bilanzierung, Kostenrechnung, Controlling)

Fertigkeiten:

Die Studierenden können

- Unternehmensziele definieren und in ein Zielsystem einordnen sowie Zielsysteme strukturieren
- Organisations- und Personalstrukturen von Unternehmen analysieren
- Methoden für Entscheidungsprobleme unter mehrfacher Zielsetzung, unter Ungewissheit sowie unter Risiko zur Lösung von entsprechenden Problemen anwenden
- Produktions- und Beschaffungssysteme sowie betriebliche Informationssysteme analysieren und einordnen
- Einfache preispolitische und weitere Instrumente des Marketing analysieren und anwenden
- Grundlegende Methoden der Finanzmathematik auf Invesititions- und Finanzierungsprobleme anwenden
- Die Grundlagen der Buchhaltung, Bilanzierung, Kostenrechnung und des Controlling erläutern und Methoden aus diesen Bereichen auf einfache Problemstellungen anwenden.

Personale Kompetenzen:

Sozialkompetenza

Die Studierenden sind in der Lage

- sich im Team zu organisieren und ein Projekt aus dem Bereich Entrepreneurship gemeinsam zu bearbeiten und einen Projektbericht
- erfolgreich problemlösungsorientiert zu kommunizieren
- · respektvoll und erfolgreich zusammenzuarbeiten

Selbstständigkeit:

Die Studierenden sind in der Lage

- Ein Projekt in einem Team zu bearbeiten und einer Lösung zuzuführen
- unter Anleitung einen Projektbericht zu verfassen

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 96, Präsenzstudium: 84

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht

Bioverfahrenstechnik: Kernqualifikation: Pflicht

Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht

General Engineering Science: Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht

General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht

General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht

General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht

Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht

Lehrveranstaltung: Grundlagen der Betriebswirtschaftslehre (Vorlesung)

Dozenten:

Prof. Kathrin Fischer, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Mever. Prof. Thomas Wrona

Sprachen:

DF

Zeitraum:

WS/SS

Inhalt:

- Die Abgrenzung der BWL von der VWL und die Gliederungsmöglichkeiten der BWL
- Wichtige Definitionen aus dem Bereich Management und Wirtschaft
- Die wichtigsten Unternehmensziele und ihre Einordnung sowie (Kern-) Funktionen der Unternehmung
- Die Bereiche Produktion und Beschaffungsmanagement, der Begriff des Supply Chain Management und die Bestandteile einer Supply Chain
- Die Definition des Begriffs Information, die Organisation des Informations- und Kommunikations (IuK)-Systems und Aspekte der Datensicherheit; Unternehmensstrategie und strategische Informationssysteme
- Der Begriff und die Bedeutung von Innovationen, insbesondere Innovationschancen, -risiken und prozesse
- Die Bedeutung des Marketing, seine Aufgaben, die Abgrenzung von B2B- und B2C-Marketing
- Aspekte der Marketingforschung (Marktportfolio, Szenario-Technik) sowie Aspekte der strategischen und der operativen Planung und Aspekte der Preispolitik
- Die grundlegenden Organisationsstrukturen in Unternehmen und einige Organisationsformen
- Grundzüge des Personalmanagements
- Die Bedeutung der Planung in Unternehmen und die wesentlichen Schritte eines Planungsprozesses
- Die wesentlichen Bestandteile einer Entscheidungssituation sowie Methoden für Entscheidungsprobleme unter mehrfacher Zielsetzung, unter Ungewissheit sowie unter Risiko
- Grundlegende Methoden der Finanzmathematik
- Die Grundlagen der Buchhaltung, der Bilanzierung und der Kostenrechnung
- Die Bedeutung des Controlling im Unternehmen und ausgewählte Methoden des Controlling
- Die wesentlichen Aspekte von Entrepreneurship-Projekten

Literatur:

Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008

Eisenführ, F., Weber, M.; Rationales Entscheiden, 4. Aufl., Berlin et al. 2003

Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006.

Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001.

Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008.

Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005

Weber, J., Schäffer, U.: Einführung in das Controlling, 12. Auflage, Stuttgart 2008.

Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006.

Lehrveranstaltung: Projekt Entrepreneurship (Problemorientierte Lehrveranstaltung)

Dozenten:

Prof. Christoph Ihl

Sprachen:

Zeitraum:

WS/SS

Inhalt:

Inhalt ist die eigenständige Erarbeitung eines Gründungsprojekts, von der ersten Idee bis zur fertigen Konzeption, wobei die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung "Grundlagen der Betriebswirtschaftslehre" zum Einsatz kommen sollen. Die Erarbeitung erfolgt in Teams und unter Anleitung eines Mentors.

Literatur:

Relevante Literatur aus der korrespondierenden Vorlesung.

Lehrveranstaltungen:

<u>Titel</u>	Тур	<u>sws</u>
Analysis I	Vorlesung	2
Analysis I	Gruppenübung	1
Analysis I	Hörsaalübung	1
Lineare Algebra I	Vorlesung	2
Lineare Algebra I	Gruppenübung	1
Lineare Algebra I	Hörsaalübung	1

Modulverantwortlich:

Prof. Anusch Taraz

Zulassungsvoraussetzung:

Keine

Empfohlene Vorkenntnisse:

Schulmathematik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

- Studierende k\u00f6nnen die grundlegenden Begriffe der Analysis und Linearen Algebra benennen und anhand von Beispielen erkl\u00e4ren.
- Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern.
- Sie kennen Beweisstrategien und können diese wiedergeben.

Fertigkeiten:

- Studierende k\u00f6nnen Aufgabenstellungen aus der Analysis und Linearen Algebra mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden l\u00f6sen.
- Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren.
- Studierende k\u00f6nnen zu gegebenen Problemstellungen einen geeigneten L\u00f6sungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten.

Personale Kompetenzen:

Sozialkompetenz:

- Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache.
- Sie k\u00f6nnen dabei insbesondere neue Konzepte adressatengerecht kommunizieren und anhand von Beispielen das Verst\u00e4ndnis der Mitstudierenden \u00fcberpr\u00fcfen und vertiefen.

Selbstständigkeit:

- Studierende können eigenständig ihr Verständnis komplexer Konzepte überprüfen, noch offene Fragen auf den Punkt bringen und sich gegebenenfalls gezielt Hilfe holen.
- Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume zielgerichtet an schwierigen Problemstellungen zu arbeiten.

Leistungspunkte:

8 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 128, Präsenzstudium: 112

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht

Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht

Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht

Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht

Lehrveranstaltung: Analysis I (Vorlesung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Grundzüge der Differential- und Integralrechnung einer Variablen:

- Aussagen, Mengen und Funktionen
- natürliche und reelle Zahlen
- Konvergenz von Folgen und Reihen
- · Stetigkeit und Differenzierbarkeit
- Mittelwertsätze
- Satz von Taylor
- Kurvendiskussion
- Fehlerrechnung
- Fixpunkt-Iterationen

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 1. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Analysis I (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DF

Zeitraum:

WS

Inhalt:

Grundzüge der Differential- und Integralrechnung einer Variablen:

- Aussagen, Mengen und Funktionen
- natürliche und reelle Zahlen
- Konvergenz von Folgen und Reihen
- Stetigkeit und Differenzierbarkeit
- Mittelwertsätze
- Satz von Taylor
- Kurvendiskussion
- Fehlerrechnung
- Fixpunkt-Iterationen

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 1. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Analysis I (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Grundzüge der Differential- und Integralrechnung einer Variablen:

- Aussagen, Mengen und Funktionen
- natürliche und reelle Zahlen
- Konvergenz von Folgen und Reihen
- Stetigkeit und Differenzierbarkeit
- Mittelwertsätze
- Satz von Taylor
- Kurvendiskussion
- Fehlerrechnung
- Fixpunkt-Iterationen

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 1. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen. Verlag Wiley-VCH, Berlin, Weinheim, New York. 2000.

Lehrveranstaltung: Lineare Algebra I (Vorlesung)

Dozenten:

Prof. Anusch Taraz

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- Vektoren im Anschauungsraum: Rechenregeln, inneres Produkt, Kreuzprodukt, Geraden und Ebenen
- Allgemeine Vektorräume: Teilräume, Isomorphie, Euklidische Vektorräume
- Lineare Gleichungssysteme: Gaußelimination, Matrizenprodukt, lineare Systeme, inverse Matrizen, Kongruenztransformationen, LR-Zerlegung, Block-Matrizen, Determinanten

Literatur:

- W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
- W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

Lehrveranstaltung: Lineare Algebra I (Übung)

Dozenten:

Prof. Anusch Taraz

Sprachen:

DE

Zeitraum:

ws

Inhalt:

- Vektoren im Anschauungsraum: Rechenregeln, inneres Produkt, Kreuzprodukt, Geraden und Ebenen
- Allgemeine Vektorräume: Teilräume, Isomorphie, Euklidische Vektorräume
- Lineare Gleichungssysteme: Gaußelimination, Matrizenprodukt, lineare Systeme, inverse Matrizen, Kongruenztransformationen, LR-Zerlegung, Block-Matrizen, Determinanten

Literatur:

- W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
- W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

Lehrveranstaltung: Lineare Algebra I (Übung)

Dozenten:

Prof. Anusch Taraz

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- Vektoren im Anschauungsraum: Rechenregeln, inneres Produkt, Kreuzprodukt, Geraden und Ebenen
- Allgemeine Vektorräume: Teilräume, Isomorphie, Euklidische Vektorräume
- Lineare Gleichungssysteme: Gaußelimination, Matrizenprodukt, lineare Systeme, inverse Matrizen, Kongruenztransformationen, LR-Zerlegung, Block-Matrizen, Determinanten

Literatur

- W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
- W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

Modul: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente

Lehrveranstaltungen:

Titel	Тур	<u>sws</u>
Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente	Vorlesung	3
Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente	Gruppenübung	2

Modulverantwortlich:

Prof. Christian Schuster

Zulassungsvoraussetzung:

Elektrotechnik I, Mathematik I

Empfohlene Vorkenntnisse:

Gleichstromnetzwerke, komplexe Zahlen

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können die grundlegende Theorien, Zusammenhänge und Methoden der Wechselstromlehre erklären. Sie können das Verhalten von linearen Netzwerken mit Hilfe der komplexen Notation von Spannungen und Strömen beschreiben. Sie können einen Überblick über die Anwendungen der Wechselstromlehre im Bereich der elektrischen Energietechnik geben. Sie können das Verhalten einfacher passiver und aktiver Bauelemente sowie deren Anwendung in einfachen Schaltungen erläutern.

Fertigkeiten:

Die Studierenden können einfache Wechselstrom-Netzwerke mit Hilfe der komplexen Notation von Spannungen und Strömen berechnen. Sie können einschätzen, welche prinzipiellen Effekte in einem Wechselstrom-Netzwerk auftauchen können. Sie können einfache Schaltkreise wie Schwingkreise, Filter und Anpassnetzwerke quantitativ analysieren und dimensionieren. Sie können die wesentlichen Elemente eines elektrischen Energieversorgungssystems (Übertrager, Leitung, Blindleistungskompensation, Mehrphasensystem) in ihrer Sinnhaftigkeit begründen und in ihren Grundzügen planen.

Personale Kompetenzen:

Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Projektwoche).

Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Online-Tests, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen.

Leistungspunkte:

6 LP

Studienleistung:

Klausu

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht

Elektrotechnik myTrack: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht

Mechatronik: Kernqualifikation: Pflicht

Lehrveranstaltung: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente (Vorlesung)

Dozenten:

Prof. Christian Schuster

Sprachen:

DE

Zeitraum:

SS

Inhalt

- Netzwerkverhalten bei allgemeinen Zeitabhängigkeiten
- Darstellung und Eigenschaften von Sinussignalen
- RLC-Elemente bei Wechselstrom/Wechselspannung
- RLC-Elemente in komplexer Darstellung
- Leistung in Wechselstrom-Netzwerken, Blindleistungskompensation
- Ortskurven und Bode-Diagramme
- Wechselstrommesstechnik
- Schwingkreise, Filter, elektrische Leitungen
- Übertrager, Drehstrom, Energiewandler
- Einfache nichtlineare und aktive Bauelemente

Literatur:

- M. Albach, "Elektrotechnik", Pearson Studium (2011)
- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)
- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)
- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)
- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)
- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)

Lehrveranstaltung: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente (Übung)

Dozenten:

Prof. Christian Schuster

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Netzwerkverhalten bei allgemeinen Zeitabhängigkeiten
- Darstellung und Eigenschaften von Sinussignalen
- RLC-Elemente bei Wechselstrom/Wechselspannung
- RLC-Elemente in komplexer Darstellung
- Leistung in Wechselstrom-Netzwerken, Blindleistungskompensation
- Ortskurven und Bode-Diagramme
- Wechselstrommesstechnik
- Schwingkreise, Filter, elektrische Leitungen
- Übertrager, Drehstrom, Energiewandler
- Einfache nichtlineare und aktive Bauelemente

Literatur:

- M. Albach, "Elektrotechnik", Pearson Studium (2011)
- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)
- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)
- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)
- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)
- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)

Modul: Objektorientierte Programmierung, Algorithmen und Datenstrukturen

Lehrveranstaltungen:

 Titel
 Typ
 SWS

 Objektorientierte Programmierung, Algorithmen und Datenstrukturen
 Vorlesung
 4

 Objektorientierte Programmierung, Algorithmen und Datenstrukturen
 Gruppenübung
 1

Modulverantwortlich:

Prof. Rolf-Rainer Grigat

Zulassungsvoraussetzung:

Veranstaltung Prozedurale Programmierung oder gleichwertige Programmierkenntnisse in imperativer Programmierung

Empfohlene Vorkenntnisse:

Zwingende Voraussetzung ist die Beherrschung imperativer Programmierung (C, Pascal, Fortran oder ähnlich). Sie sollten also z.B. einfache Datentypen (integer, double, char, bool), arrays, if-then-else, for, while, Prozedur- bzw. Funktionsaufrufe und Zeiger kennen und in eigenen Programmen damit experimentiert haben, also auch Editor, Linker, Compiler und Debugger nutzen können. Die Veranstaltung beginnt mit der Einführung von Objekten, setzt also auf oben genannte Grundlagen auf.

Dieser Hinweis ist insbesondere wichtig für Studiengänge wie AIW, GES, LUM da oben genannte Voraussetzungen dort **nicht** Bestandteil des Studienplans sind, sondern zu den Studienvoraussetzungen dieser Studiengänge zählen. Die Studiengänge ET, CI und IIW besitzen die erforderlichen Vorkenntnisse aus der Veranstaltung Prozedurale Programmierung im ersten Semester.

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Studierende können die Grundzüge des Software-Entwurfs wie den Entwurf einer Klassenarchitektur unter Einbeziehung vorhandener Klassenbibliotheken und Entwurfsmuster erklären.

Studierende können grundlegende Datenstrukturen der diskreten Mathematik beschreiben sowie wichtige Algorithmen zum Sortieren und Suchen bezüglich ihrer Komplexität bewerten.

Fertigkeiten:

Studierende sind in der Lage,

- · Software mit gegebenen Entwurfsmustern, unter Verwendung von Klassenhierarchien und Polymorphie zu entwerfen.
- Softwareentwicklung und Tests unter Verwendung von Versionsverwaltungssystemen und google Test durchzuführen.
- · Sortierung und Suche nach Daten effizient durchzuführen.
- die Komplexität von Algorithmen abzuschätzen.

Personale Kompetenzen:

Sozialkompetenz:

Studierende können in Teams arbeiten und in Foren kommunizieren.

Selbstständigkeit:

Studierende sind in der Lage selbständig über einen Zeitraum von 2-3 Wochen, unter Verwendung von SVN Repository und google Test, Programmieraufgaben z.B. LZW Datenkompression zu lösen.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht

Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht

Informatik-Ingenieurwesen: Kernqualifikation: Pflicht

Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht

Technomathematik: Kernqualifikation: Pflicht

Lehrveranstaltung: Objektorientierte Programmierung, Algorithmen und Datenstrukturen (Vorlesung)

Dozenten:

Prof. Rolf-Rainer Grigat

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Objektorientierte Analyse und Entwurf:

- Objektorientierte Programmierung in C++ und Java
- generische Programmierung
- UML
- Entwurfsmuster

Datenstrukturen und Algorithmen:

- Komplexität von Algorithmen
- · Suchen, Sortieren, Hashing,
- Stapel, Schlangen, Listen
- Bäume (AVL, Heap, 2-3-4, Trie, Huffman, Patricia, B),
- Mengen, Prioritätswarteschlangen
- gerichtete und ungerichtete Graphen (Spannbäume, kürzeste und längste Wege)

Literatur:

Skriptum

Lehrveranstaltung: Objektorientierte Programmierung, Algorithmen und Datenstrukturen (Übung)

Dozenten:

Prof. Rolf-Rainer Grigat

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Objektorientierte Analyse und Entwurf:

- Objektorientierte Programmierung in C++ und Java
- generische Programmierung
- UML
- Entwurfsmuster

Datenstrukturen und Algorithmen:

- Komplexität von Algorithmen
- Suchen, Sortieren, Hashing,
- Stapel, Schlangen, Listen
- Bäume (AVL, Heap, 2-3-4, Trie, Huffman, Patricia, B),
- Mengen, Prioritätswarteschlangen
- gerichtete und ungerichtete Graphen (Spannbäume, kürzeste und längste Wege)

Literatur:

Skriptum

Lehrveranstaltungen:

<u>Titel</u>	Тур	<u>sws</u>
Betriebliches Entscheiden	Vorlesung	2
Betriebsmanagement und -organisation	Vorlesung	2
Blue Engineering - Aspekte sozialer und ökologischer Verantwortung	Seminar	2
Einführung in das Recht	Vorlesung	2
Einführung in die Fachdidaktik der Ingenieurwissenschaften	Seminar	2
Europäische Kulturgeschichte: Einführung in die Bau-, Stil- und Kulturgeschichte	Vorlesung	2
Europäische Kulturgeschichte: Geschichte	Seminar	2
Europäische Kulturgeschichte: Kunst - Einführung	Seminar	2
Europäische Kulturgeschichte: Literatur	Seminar	2
Flexibilisierter Berufsalltag – Aktuelle Analysen aus der Arbeitssoziologie	Seminar	2
Fremdsprachkurs	Seminar	2
Geisteswissenschaften und Ingenieure: Einführung in die Kommunikationspsychologie	Seminar	2
Geisteswissenschaften und Ingenieure: Ethik für Ingenieure	Seminar	2
Gender und Technik	Seminar	2
Geschichte der Fotografie	Seminar	2
Geschichte des Schiffbaus	Vorlesung	2
Geschäftsmodellinnovation	Seminar	2
Geschäftsplanung	Vorlesung	2
Gesellschaft im Wandel	Vorlesung	2
Gesprächs- und Verhandlungsführung	Seminar	2
Globales Innovationsmanagement	Vorlesung	2
Grundlagen der Organisation	Vorlesung	2
Gründungsmangement	Vorlesung	2
Hochschuldidaktische Grundlagen in Theorie und Praxis	Seminar	2
Illustrationen als Kommunikationsmittel	Seminar	2
Inhaltliche Analyse, Strukturierung und grafische Gestaltung von Präsentations-Folien	Seminar	2
Interdisziplinarität: Kultur und Technik	Seminar	2
Interkulturelle Kompetenz/ Interkulturelle Komunikation. Grundlagen.	Seminar	2
Karrieremanagement	Vorlesung	2
Kreativseminar: Improvisationstheater	Seminar	2
Kultur und Technik - Deutschsprachig	Seminar	2
Kultur und Technik - Englischsprachig	Seminar	2
Logistische Systeme: Planung, Investitionsentscheidungen, Betrieb	Vorlesung	2
Neuere Technikgeschichte	Seminar	2
Recht für Ingenieure	Vorlesung	2
Soziologie des Ingenieurberufs	Seminar	2
Soziologie des Internets	Seminar	2
Technik in der Kunst	Seminar	2
Technik, Management, gesellschaftliche Verantwortung	Seminar	2
Umwelt und Gesellschaft	Vorlesung	2
Umweltpolitik und Nachhaltigkeit	Seminar	2
Unternehmensstrategien	Vorlesung	2
WirtschaftsPrivatRecht	Vorlesung	2
Wirtschaftsethik	Vorlesung	2
Wissenschaftliches Arbeiten	Seminar	2
Zeit- und Selbstmanagement	Seminar	2

Modulverantwortlich:

Dagmar Richter

Zulassungsvoraussetzung:

Keine

Empfohlene Vorkenntnisse:

siehe jeweilige Veranstaltungsbeschreibung

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Der Studienbereich Nichttechnische Wahlpflichtfächer

vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische

Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst.

Die Lehrarchitektur

besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im "Nichttechnischen Studienbereich" gewährleistet.

Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit.

Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen.

Die Lehr-Lern-Arrangements

sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert.

Die Lehrbereiche

basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der

Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert.

Das Kompetenzniveau

der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende – Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen.

Fachkompetenz (Wissen)

Die Studierenden können

- ausgewählte Spezialgebiete innerhalb der jeweiligen nichttechnischen Mutterdisziplinen verorten,
- in den im Lehrbereich vertretenen Disziplinen grundlegende Theorien, Kategorien, Begrifflichkeiten, Modelle, Konzepte oder künstlerischen Techniken skizzieren,
- diese fremden Fachdisziplinen systematisch auf die eigene Disziplin beziehen, d.h. sowohl abgrenzen als auch Anschlüsse benennen,
- in Grundzügen skizzieren, inwiefern wissenschaftliche Disziplinen, Paradigmen, Modelle, Instrumente, Verfahrensweisen und Repräsentationsformen der Fachwissenschaften einer individuellen und soziokulturellen Interpretation und Historizität unterliegen,
- können Gegenstandsangemessen in einer Fremdsprache kommunizieren (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist).

Fertiakeiten:

Die Studierenden können in ausgewählten Teilbereichen

- grundlegende Methoden der genannten Wissenschaftsdisziplinen anwenden.
- technische Phänomene, Modelle, Theorien usw. aus der Perspektive einer anderen, oben erwähnten Fachdisziplin befragen.
- einfache Problemstellungen aus den behandelten Wissenschaftsdisziplinen erfolgreich bearbeiten,
- bei praktischen Fragestellungen in Kontexten, die den technischen Sach- und Fachbezug übersteigen, ihre Entscheidungen zu Organisations- und Anwendungsformen der Technik begründen.

Personale Kompetenzen:

Sozialkompetenz:

Die Studierenden sind fähig,

- in unterschiedlichem Ausmaß kooperativ zu lernen
- eigene Aufgabenstellungen in den o.g. Bereichen in adressatengerechter Weise in einer Partner- oder Gruppensituation zu präsentieren und zu analysieren,
- nichttechnische Fragestellungen einer Zuhörerschaft mit technischem Hintergrund verständlich darzustellen
- sich landessprachlich kompetent, kulturell angemessen und geschlechtersensibel auszudrücken (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist)

Selbstständigkeit:

Die Studierenden sind in ausgewählten Bereichen in der Lage,

- die eigene Profession und Professionalität im Kontext der lebensweltlichen Anwendungsgebiete zu reflektieren,
- sich selbst und die eigenen Lernprozesse zu organisieren,

- Fragestellungen vor einem breiten Bildungshorizont zu reflektieren und verantwortlich zu entscheiden.
- sich in Bezug auf ein nichttechnisches Sachthema mündlich oder schriftlich kompetent auszudrücken.
- sich als unternehmerisches Subjekt zu organisieren, (sofern dies ein gewählter Schwerpunkt im NTW-Bereich ist).

Leistungspunkte:

6 LP

Studienleistung:

Arbeitsaufwand in Stunden:

Eigenstudium: 96, Präsenzstudium: 84

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht

Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht

Logistik und Mobilität: Kernqualifikation: Pflich Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht

Verfahrenstechnik: Kernqualifikation: Pflicht

Lehrveranstaltung: Betriebliches Entscheiden (Vorlesung)

Dozenten:

Dr. Ines Krebs-Zerdick

Sprachen:

DE.

Zeitraum:

SS

Inhalt:

Empfohlene Vorkenntnisse:

Module BWL I und BWL II

Dies ist eine Veranstaltung, die zum Katalog der Ergänzungsmodule des Wahlpflichtbereichs gehört. Sie ist dem sog. Block I (Betrieb und Management) zugeordnet.

Inhalt:

- 1. Zieldefinition, Problemanalyse und -strukturierung
- 2. Analyseplanung & Informationsbeschaffung
- 3. Methoden zur Problemlösung
 - Entscheidungen bei Problemen mit einfacher oder mehrfacher Zielsetzung
 - Entscheidungen unter Unsicherheit
- 4. Begrenzte Rationalität und psychologische Fallen
- 5 Implementieren von Entscheidungen
 - Entscheidungsprozesse im Unternehmen
 - Einfluss von Unternehmenskultur-, organisation und Managementstilen
 - Kommunikation/Präsentation von Analysen und Entscheidungen
 - Nachhaltigkeit von Entscheidungen: Erfolgreiche Umsetzung

Qualifikationsziele:

Die Studierenden sollen Methoden der Strukturierung, der Modellierung sowie zur Analyse und Lösung von Entscheidungsproblemen erlernen und in die Lage versetzt werden, das erworbene Wissen auf betriebswirtschaftliche Problemstellungen anzuwenden. Insbesondere sollen die Studierenden nach dem Absolvieren des Moduls in der Lage sein,

- Für betriebliche Entscheidungsprobleme geeignete Ziele zu definieren
- Strukturierte Methoden zur Generierung von Alternativen anzuwenden
- Spezielle Entscheidungsprobleme mit geeigneten Methoden einer Lösung zuzuführen, wie z.B.
- Probleme mit mehrfacher Zielsetzung
- Entscheidungsprobleme unter Risiko
- Psychologische "Fallen" und ihre Auswirkungen bei der Entscheidungsfindung zu berücksichtigen

Die Studierenden sollen zudem lernen, die Grenzen der jeweiligen theoretischen Ansätze in der betrieblichen Praxis zu erkennen und in die Lage versetzt werden, selbstständig geeignete Herangehensweisen zur Lösungen solcher Problem zu entwickeln. Dies beinhaltet

- den Aufwand für Analysen zur Entscheidungsfindung abzuschätzen und bei der Wahl des geeigneten Lösungsweges zu berücksichtigen
- die Rahmenbedingungen für die spätere, erfolgreiche Umsetzung der Lösungsalternativen systematisch in die Problemlösung mit einzubeziehen
- zu verstehen wie Entscheidungsprozesse in Unternehmen gestaltet werden und den Unternehmenserfolg beeinflussen können

Literatur:

Eisenführ, F., Weber, M.: Rationales Entscheiden, 5. Auflage, Springer-Verlag, Berlin et al. 2010. Weitere Literaturhinweise werden in der Veranstaltung gegeben./ Further current bibliography will be given in lecture. will be given in lecture.

Lehrveranstaltung: Betriebsmanagement und -organisation (Vorlesung)

Dozenten:

Prof. Hermann Lödding

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- 1. Führung
- 2. Kommunikation
- 3. Management betrieblicher Zielgrößen
- 4. Methoden
- 5. Strategien

Literatur:

Vorlesungsskript

Lehrveranstaltung: Blue Engineering - Aspekte sozialer und ökologischer Verantwortung (Seminar)

Dozenten:

Christian Hoffmann

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Das Seminar thematisiert die Verbindung und auch den Kontrast zwischen ökologischer und sozialerVerantwortung in der Ausübung des Ingenieurberufs oder einer ingenieurnahen Tätigkeit. Die

zugrundeliegende Vision ist dabei eine sozial und ökologisch nachhaltige Technikgestaltung, die das

gesamte Umfeld des jeweils zu lösenden Problems berücksichtigt. In diesem Sinne soll im Rahmen

des Seminars ein kreativer Umgang mit Fragestellungen bezüglich der Nachhaltigkeit zu der

Erarbeitung von Teilantworten führen. Themenfelder, denen die Fragestellungen zugeordnet sind,

bestehen unter anderem in der Erörterung der Dimensionen von Nachhaltigkeitsforderungen, der

Technikethik, alternativer Wirtschaftsmodelle und zukunftsweisender Technologien, aber auch nichttechnischer

Ansätze im Rahmen einer Transformation zu einer nachhaltig agierenden Gesellschaft.

Literatur:

Abhängig von den jeweiligen Gruppenthemen einer Seminarinstanz. Die Literatur wird zu Beginn des Seminars ausgegeben./ Selected current bibliography will be given in lecture.

Lehrveranstaltung: Einführung in das Recht (Vorlesung)

Dozenten:

Klaus Tempke

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Die Gerichtsbarkeiten mit Besetzungen und Instanzenzügen werden erläutert mit Schwerpunkt in der Zivilgereichtsbarkeit.

Im Prozessrecht werden Klage, Mahnbescheid und Vollstreckungsbescheid in ihren Unterschieden dargestellt.

Die Rechtsfähigkeit und die Stufen von Geschäfts- und Deliktsfähigkeit werden erläutert.

Ein Vorlesungsschwerpunkt liegt im Zustandekommen von Verträge und unterschiedlichen Vertragstypen.

Die Anfechtung und die Vertretung bei Vertragsabsclüssen werden mit ihren Folgen erläutert.

Die Berechnung von Tages-, Wochen- und Monatsfristen sowie die Verjährung werden anhand konkreter Beispiele dargestellt.

Qualifikationsziele:

Einführung in das juristische Denken, die Gerichtsbarkeiten und Instanzenzüge mit Schwerpunkt der Zivilgerichtsbarkeit.

Voraussetzungen für Vertragsabschlüsse

Vertretung, Verjährung und Anfechtung von Verträgen

Literatur:

Begleitende Unterrichtsmaterialien werden verteilt. / Current bibliography will be given in lecture.

Lehrveranstaltung: Einführung in die Fachdidaktik der Ingenieurwissenschaften (Seminar)

Dozenten:

Prof. Christian Hans Gerhard Kautz

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Lernumgebungen, Aktivierende Lehrformen

Methoden, Ergebnisse und Implikationen der empirischen Fachdidaktik

Konzeptuelles Verständnis und Fehlvorstellungen in Grundlagenveranstaltungen,

Untersuchungen zu Lernverhalten, -motivation und -einstellungen

Vorbereitung von Gruppenübungen in den unterstützten Grundlagenveranstaltungen

Problem-Based Learning

Berücksichtung von Lerntypen in der ingenieurwissenschaftlichen Lehre

Prüfungen

Literatur:

ausgewählte Artikel aus Fachzeitschriften werden an die Seminarteilnehmer verteilt, weiterführende Literatur wird zum jeweiligen Thema angegeben

Lehrveranstaltung: Europäische Kulturgeschichte: Einführung in die Bau-, Stil- und Kulturgeschichte (Vorlesung)

Dozenten:

Prof. Margarete Jarchow

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Die Vorlesung vermittelt einen Überblick über die verschiedenen Baustile sowie über die Kunst- und Kulturgeschichte von der Antike bis ins 20. Jahrhundert (griechische und römische Antike, Romanik, Gotik, Renaissance, Barock, Rokoko, Klassizismus, Historismus, Jugendstil, Neue Sachlichkeit, Neues Bauen / Bauhaus). Anhand von Beispielen aus dem In- und Ausland werden die Stilepochen erläutert.

Literatur:

Wilfried Koch, Baustilkunde, Bertelsmann Lexikon Verlag, Gütersloh 1993 Jacques Tullier, Geschichte der Kunst, Architektur, Skulptur, Malerei, Paris 2002 Silvio Vietta, Europäische Kulturgeschichte – eine Einführung, München 2005

Lehrveranstaltung: Europäische Kulturgeschichte: Geschichte (Seminar)

Dozenten:

Dr. Katja Iken

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Die Vergangenheit beeinflusst unser gegenwärtiges Leben, unsere (kollektive) Wahrnehmung, unser Denken und Handeln. Gegenstand des Seminars ist die Beschäftigung mit einzelnen Epochen der europäischen Geschichte oder mit ausgewählten Aspekten, z.B. Ideengeschichte, technischer Wandel, soziale und politische Strukturen. Analysiert werden grundlegende Quellen des jeweiligen Themenschwerpunktes. Durch die Auseinandersetzung mit Quellentexten und Forschungsergebnissen sollen die Studierenden dafür sensibilisiert werden, wie unterschiedliche Faktoren (soziokulturelle Strukturen, politische Rahmenbedingungen, technologische Entwicklungen) auf geschichtliche Abläufe einwirken und diese beeinflussen. Diskutiert werden gesellschaftliche Voraussetzungen, Bedingungen und Folgen historischer Entwicklungen.

Literatur:

- Wolfgang König (Hg.): Prophyläen Technikgeschichte, Bde. 3-5, Berlin 1997.
- Handbuch der Geschichte Europas, Bd. 1-10, hrsg. von Peter Blickle (UTB)
- Gebhardt, Handbuch der deutschen Geschichte, 23. Bde (Klett-Cotta)

Lehrveranstaltung: Europäische Kulturgeschichte: Kunst - Einführung (Seminar)

Dozenten:

Dr. Gabriele Himmelmann

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Das Seminar bietet einen Überblick über die Epochen der Kunst. Es werden Formen und Motive der Bildenden Kunst vorgestellt werden; insbesondere wird die Kunst im Wandel ihrer Funktionen thematisiert.

Beginnend mit der religiösen Malerei des Mittelalters, folgt im Anschluss die Beschäftigung mit der neuen Bildauffassung der Renaissance. In Überwindung der mittelalterlichen Bildformen entwickeln die Künstler eine neue, perspektivische Darstellungsweise, die unsere Sehgewohnheiten bis heute prägt. In dieser Zeit finden auch neue, weltliche Themen Eingang in die Kunst. Dieser Prozess setzt sich im Barock fort. Geprägt von der nationalen, besonders aber von der konfessionellen Zugehörigkeit entsteht eine Vielzahl höchst eigenständiger Bildideen. Das 18. Jahrhundert steht vor allem im Zeichen der Aufklärung; es endet mit der Französischen Revolution. Das

Zeitalter ist geprägt von einer tiefgreifenden Anderung der Bewusstseinsinhalte, die schließlich im 19. Jahrhundert einen vorläufigen Kulminationspunkt erreichen. Die bestehenden Weltbilder verändern sich nachdrücklich – dies spiegelt im besonderen Maße auch die Kunst im 20. Jahrhundert, in dem vor allem die Erfahrungen zweier Weltkriege prägend waren. Ein abschließender Blick gilt den Tendenzen in der Kunst seit den 60er Jahren bis heute.

Das Seminar stellt Werke aus Malerei, Skulptur und Kunstgewerbe/ Design in den Mittelpunkt. Anhand von Beispielen werden einzelne Kunstwerke, deren Entstehung, Produktionsbedigungen, Herstellungstechniken sowie die gesellschaftlichen Rahmenbedingungen diskutiert.

Bestandteil der Veranstaltung sind Exkursionen in Museen/ Kunstmuseen, um Zugang zu den museumsüblichen Präsentationsformen zu vermitteln.

Literatur:

- Geschichte der Kunst in 12 Bänden, Beck'sche Reihe, München 2011
- Geschichte der bildenden Kunst in Deutschland, 8 Bände, München: Prestel 2006-
- Kunst-Epochen, Reclam-Universalbibliothek, Stuttgart 2002-
- Hans Belting / Heinrich Dilly / Wolfgang Kemp / Willibald Sauerländer / Martin Warnke, Kunstgeschichte Eine Einführung, 7. Aufl. Berlin 2008
- Jutta Held / Norbert Schneider, Grundzüge der Kunstwissenschaft, Köln 2007
- Michael J. Gelb, How to think like Leonardo da Vinci, New York 1998
- E.H. Gombrich, The Story of Art, Phaidon Press Limited, London 1995
- Wilfried Koch, Baustilkunde, Bertelsmann Lexikon Verlag, Gütersloh 1993
 Jacques Tullier, Geschichte der Kunst, Architektur, Skulptur, Malerei, Paris 2002
- Silvio Vietta, Europäische Kulturgeschichte eine Einführung, München 2005

Lehrveranstaltung: Europäische Kulturgeschichte: Literatur (Seminar)

Dozenten:

Dr. Ingo Irsigler

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Literarische Texte sind ein Spiegel der Epoche, in der sie entstehen. Sie sind abhängig vom politischen, sozialen und kulturellen Diskurs ihrer Zeit, dem gesellschaftlichen Umfeld und ästhetischen Vorstellungen ihres Umfeldes.

In dem Literatur-Seminar des "European Culture" Blocks erfolgt eine Auseinandersetzung mit internationaler Literatur anhand ausgewählter von Semester zu Semester wechselnder Schwerpunkte. Diese können sein: Eine bestimmte literarische Epoche, ein Überblick über die Epochen der Weltliteratur, die Beschäftigung mit einer Schriftstellerin/ einem Schriftsteller oder einer literarischen Kategorie (z.B. Reiseberichte. Roman, Drama).

Anhand ausgewählter kurzer, literarischer und journalistischer Texte, Reportagen und Filmbeispiele wird das jeweilige Seminarthema untersucht. Ein besonderes Augenmerk des Seminars gilt dem Aspekt "Literatur und Medien" sowie der Fragestellung welche Rolle Technik in Literatur, Film und journalistischen Werken spielen.

Literatur:

- The Cambridge History of German Literature, edited by Helen Watanabe-O'Kelly, Cambridge University Press 2000
- Nicholas Boyle, German Literature, A very short introduction, Oxford University Press 2008

Lehrveranstaltung: Flexibilisierter Berufsalltag – Aktuelle Analysen aus der Arbeitssoziologie (Seminar)

Dozenten:

Prof. Gabriele Winker

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Arbeit unterliegt seit einigen Jahren einem tief greifenden und vielfältigen Veränderungsprozess, der sich durch die Aufweichung und Überwindung etablierter Strukturen und Regelungen kennzeichnen lässt. "Entgrenzung" ist in diesem Zusammenhang zu einem Schlüsselbegriff avanciert, unter dem die sozialen Prozesse der Ausdifferenzierung von Arbeitsformen und -inhalten, Arbeitszeiten und -orten gefasst werden. Gleichzeitig kommen zunehmend Informations- und Kommunikationstechnologien zum Einsatz, die die Komplexität und Dynamik dieser Veränderungsprozesse zusätzlich erhöhen. In der Vorlesung werden aktuelle Befunde aus der Arbeitsforschung vorgestellt. Themen sind u.a. die Arbeitskraftunternehmer-These (Voß/Pongratz), die Flexibilisierung, Entgrenzung, Subjektivierung und Prekarisierung von Arbeit, die Bedeutung neuer Technologien im Arbeitsalltag, Arbeitsbedingungen in Ingenieurberufen, Lohndifferenzierungen, Mitbestimmung im Betrieb sowie die Vereinbarkeit von Beruf und Familie.

Literatur

- Deutschmann, Christoph: Postindustrielle Industriesoziologie. Theoretische Grundlagen, Arbeitsverhältnisse und soziale Identitäten. Weinheim, München, 2002
- Mikl-Horke, Gertraude: Industrie- und Arbeitssoziologie. 5., vollst. neubearb Aufl., München, Wien, 2000
- Minssen, Heiner: Arbeits- und Industriesoziologie. Eine Einführung. Franfurt, New York, 2006
- Voß, G. Günter; Pongratz, Hans J.: Der Arbeitskraftunternehmer. Eine neue Grundform der "Ware Arbeitskraft"? In: Kölner Zeitschrift für Soziologie und Sozialpsychologie, Jg. 50, 1998, H. 1, S. 131-158

Lehrveranstaltung: Fremdsprachkurs (Seminar)

Dozenten:

Dagmar Richter

Sprachen:

Zeitraum:

WS/SS

Inhalt:

Studierende können hier einen Fremdsprachkurs aus dem Angebot wählen, dass die Hamburger Volkshochschule im Auftrag der TUHH konzipiert hat und auf dem Campus anbietet. Es handelt sich um Kurse in den Sprachen Englisch, Chinesisch, Französisch, Japanisch, Portugisisch, Russisch, Schwedisch, Spanisch und Deutsch als Fremdsprache. In allen Sprachen werden zielgerichtet allgemeinsprachliche Kenntnisse vermittelt, in Englisch enthalten zudem alle Kurse fachsprachliche Anteile (English for technical purposes)

Literatur:

Kursspezifische Literatur / selected bibliography depending on special lecture programm.

Lehrveranstaltung: Geisteswissenschaften und Ingenieure: Einführung in die Kommunikationspsychologie (Seminar)

Dozenten:

Ronja Liebnau

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Das Seminar vermittelt Einblicke in Inhalte und Methoden der Kommunikationspsychologie und Ihre Möglichkeiten der Anwendung im Ingenieurwissenschaftlichen Bereich.

Im Schwerpunkt werden die Modelle der Hamburger Kommunikationspsychologie nach Schulz von Thun (z.B. Kommunikationsquadrat, Inneres Team, Werte- und Entwicklungsquadrat) gelehrt und angewendet auf spezifische ingenieurwissenschaftliche Situationen sowie kommunikative Herausforderungen des Berufsalltags

Darüber hinaus befasst sich das Seminar mit der Transaktionsanalyse und Gesprächsführung. Hierbei spielen Methoden wie "Aktives Zuhören" eine wesentliche Rolle.

Neben den Präsentationen (Gruppenarbeiten) durch die Studierenden wird vor allem anhand praktischer Übungen gearbeitet. Dabei werden die beruflichen Fragestellungen und Erfahrungen der Studierenden eingebracht. In Kleingruppenarbeit werden so die Modelle veranschaulicht und anhand eigener Kommunikationsbeispiele das Verständnis vertieft.

Literatur:

Lück, Helmut E. (2011) Geschichte der Psychologie; Strömungen, Schulen, Entwicklungen; Grundriss der Psychologie Bd. 1. Kohlhammer. Brüggemeier, Beate (2010). Wertschätzende Kommunikation im Business: Wer sich öffnet, kommt weiter. Wie Sie die Gewaltfreie Kommunikation im Berufsalltag nutzen. Junfermann.

Watzlawick, Paul, Beavin, Janet H. & Jackson, Don D. (2011). Menschliche Kommunikation: Formen, Störungen, Paradoxien. Huber.

Schmidt, Rainer (2009). Immer richtig miteinander reden: Transaktionsanalyse in Beruf und Alltag. Junfermann

Schulz von Thun, Friedemann (2010). Miteinander reden 1: Störungen und Klärungen. Allgemeine Psychologie der Kommunikation. Rororo

Schulz von Thun, Friedemann (2010). Miteinander reden, Band 3: Das "Innere Team" und

situationsgerechte Kommunikation. Rororo. Schwerpunkte: Kapitel 1, 3, 6

Schulz von Thun, Friedemann (2010). Miteinander reden 2: Stile, Werte und Persönlichkeitsentwicklung; Differentielle Psychologie der Kommunikation. Rororo.

Helwig, Paul (1969). Charakterologie. Herder. S. 63-69

Stahl, Eberhard (2002). Dynamik in Gruppen. Handbuch der Gruppenleitung. Beltz.

Fisher, Roger, Ury, William& Patton, Bruce (2009). Das Harvard-Konzept: Der Klassiker der

Verhandlungstechnik, Campus,

Simon, Walter (2004). GABALs großer Methodenkoffer: Grundlagen der Kommunikation.

Verhandlungstechniken. GABAL. S. 205 - 213

Lehrveranstaltung: Humanities and Engineering: Ethics for Engineers (Seminar)

Dozenten:

Anne Katrin Finger, Gunnar Jeremias

Sprachen:

Zeitraum:

WS/SS

Scientists increasingly need to acknowledge the social dimension of their work. In order to take responsibility for the political, economic environmental and security consequences of scientific work, engineers and scientists need ethical guidelines. The seminar will address this dimension of scientific work. It will be an opportunity to discover ethics as a means to act effectively, efficiently and responsibly as an engineer and a scientist.

The goals of the seminar include:

- Raising awareness about ethical dilemmas in scientific decision-making;
- Increasing knowledge about the dual-use character of the natural sciences; and
- Improving the understanding of scientists' responsibility for the results of their professional activities.

Topics to be addressed include the role of engineers and scientists in:

- Making decisions about the distribution of rare goods;
- Preventing the misuse of technologies for hostile purposes;
- Choosing arguments and defending positions in situations of conflicting interests;
- Taking decisions at the national and international level about laws, rules and regulations concerning scientific conduct; and
- The development of codes of conduct as a guideline for responsible behaviour.

The seminar will demonstrate ethical problems in the natural sciences and engineering by looking at current problems from areas such as medicine, the life sciences and physics. Issues will include organ donation, the future of energy and the dual use problem in biological research. Seminar participants will also get an opportunity to discuss the careers of famous scientists as examples of ethical and nonethical behaviour.

Issues will be introduced by a short presentation and a Q & A session, followed by group work on selected problems. All participants will have to prepare a presentation. Those requiring a graded certificate additionally have to write a 3-4 page paper on selected issues. The seminar will use interactive tools of teaching such as role playing, simulations and presentations by students. Group work and active participation is expected at all stages.

Literatur:

- · Zilinskas, Raymond (ed.): The Microbiologist and Biological Defense Research. Ethics, Politics, and International Security, The New York Academy of Sciences, New York 1992.
- Seltzer, Jennifer (ed.): Science, Technology, and Ethical Priorities, Student Pugwash USA, Washington 1997.
- Bloemers, Wolf: Ethics and Social Justice, Frankfurt am Main 2003

Lehrveranstaltung: Gender und Technik (Seminar)

Dozenten:

Prof. Gabriele Winker

Sprachen:

DF

Zeitraum:

SS

Inhalt:

Technologien sind einerseits gesellschaftlich geformt und beeinflussen andererseits ökonomische und soziale Strukturen. Damit haben auch Geschlechterverhältnisse Einfluss auf die Entwicklung und Nutzung von Technologien und werden umgekehrt von Technologien geprägt. Wie genau diese Ko-Konstruktionen von Geschlecht und Technik aussehen, wird in diesem Kurs in Theorie und Praxis verfolgt. Dabei ist die verbindende Frage, wie die mit den technologischen Entwicklungen einhergehenden Veränderungen Einfluss auf die geschlechtshierarchische Arbeitsteilung, auf Männlichkeit- und Weiblichkeitsstereotype und auf das individuelle Handeln von Frauen und Männern haben. Gleichzeitig wird danach gefragt, welche Gestaltungsperspektiven sich daraus für eine gendersensitive Technologiegestaltung ergeben.

Literatur:

Frank, Susanne (2011): Neue Perspektiven in der Stadt- und Geschlechterforschung. In: Stadt und Urbanität, Transdisziplinäre Perspektiven, Berlin, 89-103.

Haraway, Donna (1995): Lieber Kyborg als Göttin. In: Monströse Versprechen. Hamburg, 165-184. Hausen, Karin (1977): Die Polarisierung der Geschlechtercharaktere Eine Spiegelung der Dissoziation von Erwerbs- und Familienleben. In: Conze, Werner (Hg.), Sozialgeschichte der Familie in der Neuzeit Europas. Stuttgart, 363-393.

Ihsen, Susanne (2010): Ingenieurinnen: Frauen in einer Männerdomäne. In: Becker, Ruth/ Kortendiek,

Beate (Hg.): Handbuch Frauen- und Geschlechterforschung. Wiesbaden, 799-805.

Parikh, Jyoti (2012): Das Mainstreaming von Gender in der Klimawandeldebatte. In: Çaglar, Gülay/Schwenken, Helen/Castro Varela, Maria do Mar (Hg.): Macht Geschlecht Klima.

Feministische Perspektiven auf Klima, gesellschaftliche Naturverhältnisse und Gerechtigkeit. Opladen,

Zachmann, Karin (2004): Die bürgerliche und soldatische Erbschaft Das Berufsbild der Ingenieure und seine Verankerung in der Geschlechterordnung (1850-1950). In: Dies.: Mobilisierung der Frauen. Frankfurt/ New York, 117-153.

Lehrveranstaltung: Geschichte der Fotografie (Seminar)

Dozenten:

Dr. Wolf Jahn

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Das Seminar erarbeitet einen Überblick über die Geschichte der Fotografie. Dabei liegt einer der Schwerpunkte auf den wechselseitigen Einflüssen zwischen der neuen Bildproduktion und den traditionellen bildenden Künsten. Darüber hinaus erobert die Fotografie ebenso die nichtk ünstlerischen Bereiche. Als Mittel wissenschaftlicher Erschließung, als Medium für Reise-, Kriegsoder Reportagedokumentation, allgemein als die bis heute führende Technik medialer Bildvermittlung kommt sie zum Einsatz. Parallel dazu entwickelt und verwandelt sich die Fotografie vom analogen zum digitalen und heute oModulnachweisipräsenten Bildmedium.

Literatur:

Wird auf Wunsch zur Verfügung gestellt; will be given on demand

Lehrveranstaltung: Geschichte des Schiffbaus (Vorlesung)

Dozenten:

Prof. Eike Lehmann

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Die Vorlesung gibt eine Einführung in die historische Entwicklung des industriellen Schiffbaus vom 19. Jahrhundert bis zur Jetztzeit. Die wichtigsten Entwicklungsschritte, wie die Einführung des Stahls und der mechanischen Antriebstechnik werden an Hand der verschiedenen Schiffstypen behandelt. Zur beispielhaften Vertiefung werden u. a. die Entwicklung der Propulsionsorgane wie Schaufelräder, Propeller, und Strahlantriebe erläutert. Weiterhin die Verarbeitung des Stahles durch Gießen, Nieten und Schweißen erläutert. Sonderthemen wie das Docken von Schiffen oder die Eisbrechtechnik oder das Eindringen von Natur- und Ingenieurswissenschaften in den Schiffbau soll zeigen, dass die Entwicklung des Schiffbaus ein besonders prägnantes Beispiel der Entwicklung der ganzen industriellen Technik ist und in vielen Fällen die entscheidenden Impulse hierzu geliefert hat.

Literatur:

Literatur wird in der Veranstaltung bekannt gegeben. Current biblography will be announced in lecture.

Lehrveranstaltung: Geschäftsmodellinnovation (Seminar)

Dozenten:

Prof. Christoph Ihl

Sprachen:

DE

Zeitraum:

SS

Inhalt:

In Unternehmen darf sich Innovation längst nicht mehr allein auf Produkte beschränken, sondern muss eine ganzheitliche Perspektive auf Geschäftsmodelle einnehmen. Viele Beispiele aus Handel, Medienwirtschaft aber auch Industrie zeigen die Probleme etablierter Unternehmen, ihre Geschäftsmodelle anzupassen. Startups können auf unternehmerische Möglichkeiten oft schneller und agiler reagieren, indem sie Wertangebote durch Service- und Softwareanteile neu gestalten oder transformieren.

In diesem Kurs erarbeiten die Studierenden ein Instrumentarium, das sowohl in etablierten als auch neuzugründenden Unternehmen für eine systematische Geschäftsmodellinnovation eingesetzt werden kann, damit sie kein Zufallsprodukt bleibt. Die Studierenden sollen auf dieser Basis in Teams eine eigene Geschäftsmodellinnovation konzipieren.

Literatur:

- Osterwalder, A.; Yves, P. (2010). Business model generation: a handbook for visionaries, game changers, and challengers. John Wiley & Sons, 2010.
- Grichnik, Dietmar; Oliver Gassmann. Das unternehmerische Unternehmen Revitalisieren und Gestalten der Zukunft mit Effectuation -Navigieren und Kurshalten in stürmischen Zeiten. Springer, 2013.
- Gassmann, Oliver, Karolin Frankenberger, and Michaela Csik. Geschäftsmodelle entwickeln: 55 innovative Konzepte mit dem St. Galler Business Model Navigator. Carl Hanser Verlag, 2013.

Lehrveranstaltung: Geschäftsplanung (Vorlesung)

Dozenten:

Prof. Christoph Ihl

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Dieser Kurs baut auf dem Kurs "Geschäftsmodellinnovation" auf. Die Studierenden sollen das Konzept für eine Geschäftsmodellinnovation in einem detaillierten und fundierten Geschäftsplan ausarbeiten. Hierzu werden Aufbau, Bestandteile und Gestaltung eines Geschäftsplanes diskutiert und übertragen auf die eigene Geschäftsidee. Zusätzlich sollen die Studierenden den Prinzipien des "evidencebased entrepreneurship" folgend ihre Annahmen zum Geschäftsmodell konkret formulierend und auch testen. Dieser Validierungsprozess und dessen Ergebnisse sollen sich ebenfalls im Geschäftsplan niederschlagen. Am Ender der Veranstaltung erhalten die Teams die Möglichkeit, ihre Geschäftspläne vor einer Expertenjury zu präsentieren.

Literatur:

Blank, Steven Gary, and Bob Dorf. The startup owner's manual: the step-by-step guide for building a great company. K&S Ranch, Incorporated, 2012.

Nagl, Anna. Der Businessplan: Geschäftspläne professionell erstellen; mit Checklisten und Fallbeispielen. 6. Aufl. Wiesbaden: Gabler, 2011

Lehrveranstaltung: Gesellschaft im Wandel (Vorlesung)

Dozenten:

Dr. Michael Florian

Sprachen:

DF

Zeitraum:

WS

Inhalt:

In welcher Gesellschaft leben wir eigentlich und wie wurde sie, wie sie ist? Die Charakterisierung der Gegenwartsgesellschaft ist immer wieder Gegenstand soziologischer Forschung und publizistischer Überlegungen. Im Unterschied zu oberflächlichen Zeitdiagnosen und Trendbeobachtungen möchte die Veranstaltung einen einführenden Einblick in die soziologische Analyse des gesellschaftlichen Wandels anbieten. Neben der Frage, woraus Gesellschaft besteht und wie sie sich wandeln kann, beschäftigt sich die Vorlesung mit konkreten gesellschaftlichen Phänomenen und ihrer Analyse. Dabei werden einzelne Facetten des komplexen Phänomens des sozialen Wandels herausgegriffen und analysiert. Der Schwerpunkt liegt dabei auf Problemstellungen wie z.B. Globalisierung und globale Entwicklungen, Technik und Gesellschaft im Wandel, demografischer Wandel und "Überalterung" der Bevölkerung, Veränderungen im Bereich von Familie, privaten Lebensformen und Geschlechterbeziehungen sowie Wandel von Bildungschancen, Armut und sozialen Ungleichheiten.

Literatur:

Geißler, Rainer (2008): Die Sozialstruktur Deutschlands. Zur gesellschaftlichen Entwicklung mit einer Bilanz zur Vereinigung. Mit einem Beitrag von Thomas Meyer. 5., durchgesehene Auflage. Wiesbaden: VS Verlag für Sozialwissenschaften.

Giddens, Anthony; Fleck, Christian; Egger de Campo, Marianne (2009): Soziologie. Graz/Wien: Nausner & Nausner. Jäger, Wieland; Weinzierl, Ulrike (2011): Moderne soziologische Theorien und sozialer Wandel. 2. Auflage. VS Verlag für Sozialwissenschaften und Springer Fachmedien.

Joas, Hans (Hg.) (2007): Lehrbuch der Soziologie. 3., überarbeitete und erweiterte Auflage. Frankfurt/New York: Campus Verlag. Peuckert. Rüdiger (2012): Familienformen im sozialen Wandel. Wiesbaden: VS Verlag für Sozialwissenschaften.

Schäfers, Bernhard (2004): Sozialstruktur und sozialer Wandel in Deutschland. 8., völlig neu bearb. Aufl. Stuttgart: Lucius & Lucius.

Scheuch, Erwin K. unter Mitarb. von Ute Scheuch (2003): Sozialer Wandel. 2 Bände. Wiesbaden: Westdeutscher Verlag.

Wiswede, Günter; Kutsch, Thomas (1978): Sozialer Wandel. Zur Erklärungskraft neuerer Entwicklungs- und Modernisierungstheorien. Darmstadt: Wissenschaftliche Buchgesellschaft.

Zapf, Wolfgang (Hg.) (1979): Theorien des sozialen Wandels. 4. Aufl. Königstein/Ts.: Verl.-Gruppe Athenäum, Hain, Scriptor, Hanstein.

Lehrveranstaltung: Gesprächs- und Verhandlungsführung (Seminar)

Dozenten:

Sybille Hausburg

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

- Grundlagen der
- Kommunikation und Gesprächsführung
- div. Kommunikationsmodelle
- zielorientierte Gesprächsführung: Planung, Vorbereitung und Gestaltung
- Gespräche führen Techniken der Gesprächssteuerung
- Moderationstechniken (Fragetechniken/ Zuhörtechniken/ Feedback)
- Bedeutung von Sprache und Körpersprache Der erste Eindruck zählt!
- Optimale Verhandlungsvorbereitung
- Argumentationstechniken
- Einwandbehandlung und Umgang mit schwierigen Verhandlungspartnern
- Das Verhandlungsprinzip des Harvard-Konzepts/ Verhandlungstaktiken
- Gesprächsführung in Bewerbungsgesprächen und Gehaltsverhandlungen
- Schwierige Kritikgespräche
- Gesprächspartner beeinflussen: Manipulationsmethoden erkennen und abwehren
- Einblick in NLP (Neurolinguistisches Programmieren)

Die Referatsthemen ergänzen die Seminarinhalte. Beispiele für Referatsthemen:

- Techniken der Gesprächssteuerung: Fragetechniken (Typen, Nutzen, Einsatz)/ Moderationstechniken
- Die Macht des Ersten Eindrucks
- Konflikte und Konfliktmanagement (Prävention und Lösungsstrategien)
- $\hbox{-} Schlagfertigkeit (Ziele, Techniken, Abwehr von Angriffen) \\$
- Verhandeln nach dem Harvard-Konzept
- Verhandlungstaktiken in schwierigen Situationen
- Psychologie der Manipulation (Methoden und Abwehrstrategien)

Literatur:

Cerwinka, Gabriele u.a.: Beim ersten Eindruck gewinnen. Professionell agieren in Alltag und Business, Linde 2006

Edmüller, Andreas u.a.; Konfliktmanagement, Haufe 2010

Fisher, Roger; William Ury; Bruce Patton: Das Harvardkonzept. Campus 2009

Heeper, Astrid; Michael Schmidt: Verhandlungstechniken, Pocket Business Cornelsen 2003

Levine, Robert: Die große Verführung. Psychologie der Manipulation, Piper Verlag 2011

Nöllke, Mathias: Schlagfertigkeit, Haufe 2009

Portner, Jutta: Besser verhandeln, Gabal Verlag 2013

Schranner, Mathias: Verhandeln im Grenzbereich, Econ Verlag 2012

Seifert, Josef W.: Visualisieren, Präsentieren, Moderieren Gabal 2009

 $We is bach, Christian-Rainer: Professionelle \ Gespr\"{a}chs f\"{u}hrung, Beck-Wirtschaftsberater \ im \ DTV \ 2003 \ and \ State \ From \ Fro$

Lehrveranstaltung: Global Innovation Management (Vorlesung)

Dozenten:

Dr. Stephan Buse

Sprachen:

. El

Zeitraum:

WS

Inhalt:

General Aim:

The aim of this course is to demonstrate the challenges and opportunities offered by well differentiated innovation management within firms in view of the increasing globalisation of the world economy.

Specifiv (Learning) Obejectives:

- Why do managers have to think about "Global Innovation Management"?
- What are the characteristics and drivers of globalisation and how do they affect firms' innovation strategies?
- · What opportunities and risks do firms of different sizes face as a result of the increasing globalisation of the world economy?
- What strategic and organisational challenges concerning innovation management do firms face if they are to be able to succeed internationally?
- What can firms learn from globally successful innovators?
- · What role do (global) innovation networks play? How can firms of all sizes benefit from them

Syllabus:

- Differences between "Innovation Management" and "Global Innovation Management" An Introduction
- Drivers, Challenges and Chances of Globalisation
- Knowledge Creation Around the Globe
- · Global Innovation Management in Firms
- Strategies for Extending the Global Product and Target Market Portfolio

Literatur:

- R.A. Burgelman, M.A. Maidique, S.C. Wheelwright; Strategic Management of Technology and Innovation; 5th edition, Irwin, 2009.
- J. Tidd, J. bessant; Managing Innovation, 4th edition, John Wiley & Sons. Ltd., 2009.
- C.K. Prahalad, M.S. Krishnan; The new age of innovation, McGraw-Hill, 2008.
- Keith Goffin, Rick Mitchell; Innovation Management, Palgrave Macmillian, 2005.
- C.A. Bartlett, S. Ghoshal, J. Birkinshaw; Transnational Management, 4th edition, McGraw-Hill, 2004
- R. Boutellier, O. Gassmann, M. von Zedtwitz; Managing Global Innovation, Springer, 2000.
- · Additional articles will be announced in class.

Lehrveranstaltung: Grundlagen der Organisation (Vorlesung)

Dozenten:

Prof. Christian Ringle

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- Analyse von Organisationen
- Organisationsstrukturen und deren Gestaltung
- Prozessorganisation (Design, Analyse, Optimierung)
- Basiswissen: Supply Chain Management

Literatur:

Recommended Literature:

- Jones, G. R. (2010): Organizational Theory, Design, and Change, 6/e.
- Gibson, J.L./Ivancevich, J.M./Donnelly, J.H./Konopaske, R. (2009): Organizations Behavior, Structure, Processes, 13/e.
- Slack, N./Chambers, S./Johnston, R.(2004): Operations Management, 4/e.

Further reading:

- Becker, J./Kugeler, M./Rosemann, M. (2005): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 5. Auflage.
- Jones, G.R./Bouncken, R. (2008): Organisation: Theorie, Design und Wandel, 5. Auflage.
- Hansmann, K.-W. (2006): Industrielles Management, 8. Auflage.
- Thonemann, U. (2010): Operations Management: Konzepte, Methoden und Anwendungen, 2. Auflage.
- Voigt, K.-I. (2008): Industrielles Management Industriebetriebslehre aus prozessorientierter Sicht.

Lehrveranstaltung: Gründungsmangement (Vorlesung)

Dozenten:

Prof. Christian Lüthje

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Allgemeine Beschreibung des Inhalts und Ziels Kurses

Ziel der Veranstaltung ist es, Studierende auf einen möglichen Karriereweg als Unternehmer vorzubereiten. Die Vorlesung befasst sich zunächst mit den theoretischen Grundlagen von Entrepreneurship und der wirtschaftlichen Bedeutung von Unternehmensgründungen. In den Einheiten zur Grundsatzplanung und strategischen Entscheidungen lernen die Studierenden, welche Entscheidungen von Entrepreneuren im Prozess der Unternehmensgründung getroffen werden müssen. Sie beschäftigen sich dabei mit der Entwicklung und Bewertung von Geschäftsideen und -modellen, dem Erstellen von Businessplänen und der Finanzierung von Startups. Über die eigentliche Gründung hinaus widmet sich die Vorlesung zudem der Gestaltung wesentlicher Unternehmensfunktionen in jungen Unternehmen, insbesondere der Marketing- und Organisationsfunktion. Die Leminhalte der Vorlesung werden anhand aktueller Forschungsergebnisse, praktischer Beispiele sowie Vorträgen aus der Gründungspraxis aufbereitet und dargeboten.

Erläuterung der wichtigsten Inhalte

In den theoretischen Grundlagen wird vermittelt, was ein Entrepreneur ist und welche konstituierenden Elemente diesen definieren. Weiterhin wird aufgezeigt, welche charakteristischen Persönlichkeitseigenschaften und Verhaltensweisen einem Entrepreneur zugeschrieben werden. In den Einheiten zu unternehmerischen Phasenkonzepten und der Erfolgsfaktorenforschung lernen die Studierenden verschiedene idealtypische Gründungsprozessmodelle sowie empirisch gesicherte Erfolgsvariablen kennen. Die Veranstaltung beschäftigt sich dann mit dem aktuellen Gründungsgeschehen in Deutschland, der Rolle von Entrepreneuren in der gesamtwirtschaftlichen Entwicklung und der Bedeutung von öffentlichen Bildungs- und Forschungsinstituten für junge Unternehmen. In den Lerneinheiten zur Grundsatzplanung und strategischen Entscheidungen wird geklärt, welche Entscheidungen von Entrepreneuren im Prozess der Unternehmensgründung getroffen werden müssen (Gewinnung und Bewertung von Geschäftsideen, Geschäftsplanung, Finanzierung, Rechtsform und steuerliche Aspekte, Markt- und Wachstumsstrategien, Standort, Netzwerke und strategische Partnerschaften). In den abschließenden Veranstaltungen geht es um die Bewältigung der Herausforderungen hinsichtlich der Ausgestaltung von Unternehmensfunktionen in jungen Unternehmen (Marketing, Führung, Organisation, Gründerteam, Organisationsentwicklung).

Wissen

Die Studierenden können...

- wiedergeben, was ein Entrepreneur ist und welche Rolle Entrepreneure in der gesamtwirtschaftlichen Entwicklung einnehmen.
- grundlegende Begriffe, Theorien und Methoden aus den wichtigsten Teilbereichen des Gründungsmanagements benennen und erklären
- zu verschiedenen Gründungsideen, Geschäftsmodellen und strategischen Entscheidungen hinsichtlich der Geschäftsplanung kritisch Stellung beziehen.
- Zusammenhänge zwischen unterschiedlichen unternehmerischen Entscheidungsfeldern in der Vorgründungs-, Gründungs- und Nachgründungsphase erkennen und Wechselwirkungen analysieren.

Fertigkeiten

Die Studierenden können...

- mit Hilfe ihrer erworbenen Kenntnisse in unternehmerischen Entscheidungssituationen der Gründungsphase auch verschiedene Faktoren parallel betrachten und begründet handeln (Gewinnung und Bewertung von Geschäftsideen, Geschäftsplanung, Finanzierung, Rechtsform und steuerliche Aspekte, Markt- und Wachstumsstrategien, Standort, Netzwerke und strategische Partnerschaften).
- in grundlegenden betriebswirtschaftlichen Funktionsbereichen in realistischen unternehmerischen Situationen Entscheidungen begründet treffen (Marketing, Führung, Organisation, Gründerteam, Organisationsentwicklung).
- unternehmerische Entscheidungssituationen im Nachhinein kritisch reflektieren und Konsequenzen für zukünftige Entscheidungen ableiten.

Personale Kompetenz

Sozialkompetenz

Die Studierenden können...

- angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen.
- auch mit ihnen zuvor unbekannten Kommilitoninnen und Kommilitonen in Dialog treten, an Diskussionen teilnehmen und fundierte Argumente einbringen.
- mit Gastreferenten aus der Gründungspraxis konstruktiv interagieren und Erfahrungen aus den Vorträgen aufnehmen.

Selbständigkeit

Die Studierenden können...

- mögliche Konsequenzen sowie Vor- und Nachteile einer (eigenen) beruflichen Selbständigkeit einschätzen.
- eigene Stärken und Schwächen hinsichtlich der anfallenden Aufgaben im Gründungsprozess allgemein bestimmen.
- mit Hilfe von Hinweisen in unternehmerischen Situationen Entscheidungen begründen und treffen sowie Aufgaben definieren und sich hierfür notwendiges Wissen erschließen.

Literatur:

Kuratko, Donald F. (2009): Introduction to Entrepreneurship, 8th Edition, Cengage Learning Kuratko, Donald F. and Hodgetts, Richard M. (2007): Entrepreneurship – Theory, Process Practice, Thomson South-Western Fueglistaller, Urs; Müller, Christoph; Müller, Susan und Volery, Thierry (2012): Entrepreneurship Modelle - Umsetzung - Perspektiven Mit Fallbeispielen aus Deutschland, Österreich und der Schweiz, Gabler

Lehrveranstaltung: Hochschuldidaktische Grundlagen in Theorie und Praxis (Seminar)

Dozenten:

Prof. Christian Hans Gerhard Kautz, Jenny Alice Rohde, Siska Simon

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

- Die Rolle der Lernenden und des Lehrenden
- Lernprozesse und -theorien
- Neurodidaktik, Motivation und didaktische Reduktion
- Moderation und Präsentation
- Methoden zur Förderung der Motivation und Mitarbeit von Studierenden
- Planung, Durchführung und Reflexion einer exemplarischen Veranstaltungseinheit
- Feedback (Regeln und Methoden)
- Ausgewählte Themen aus der Fachdidaktik der Ingenieurwissenschaften (Methodik, Ergebnisse, Implikationen für die Lehre)
- Simulationen inklusive Reflexionen
- Peerhospitationen inklusive Reflexionsarbeit

Literatur:

Auszüge aus Fachliteratur zu oben genannten Themen werden in der Veranstaltung ausgegeben.

Lehrveranstaltung: Illustrationen als Kommunikationsmittel (Seminar)

Dozenten:

Jörg Heuser

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Handgezeichnete Illustrationen sind wie schriftliche Beschreibungen, technische Zeichnungen und CAD Modelle wirksame Kommunikationsmittel. Im Vergleich können Illustrationen jedoch in kürzerer Zeit erstellt werden und benötigen außer einem Bleistift oder einem Kugelschreiber keine zusätzlichen Werkzeuge. Daher sind Handskizzen gerade zu Beginn einer Produkt- oder Prozessentwicklung besonders hilfreich, um (bisher) abstrakte Ideen verständlich und vergleichbar darzustellen.

Das Seminar lehrt Grundlagen- und weiterführende Techniken. Der theoretische Teil umfasst den Aufbau und sinnvollen Gebrauch von Perspektiven, Körper- und Schlagschatten sowie andere Methoden, einen räumlichen Eindruck zu erzeugen.

Der Schwerpunkt liegt auf einfach zu erlernenden Techniken und der Anwendung in der täglichen industriellen Praxis. Das Seminar besteht aus sechs Teilen zu je drei Stunden. Inhalt der jeweiligen Seminarbausteine ist eine Einführung in die speziellen Methoden gefolgt von Übungen. Die Studierenden haben gegen Schluss des Seminars die Möglichkeit, eine Hausarbeit vor Ihren Kolleginnen und Kollegen zu präsentieren.

Als Prüfung bekommen die Studierenden eine Problemstellung, die sie mit Hilfe von Skizzen verständliche illustrieren werden. Die Prüfung erfolgt vor Ort während des letzten Termins.

Literatur:

Koos Eisen und Roselien Steur "Sketching - Drawing Techniques for Product Designer", BIS Verlag Scott Robertson, "LIFT OFF - Air Vehicle Sketches ...", Designstudio Press sowie "How to Draw: Drawing and Sketching Objects and Environments from Your Imagination"

Lehrveranstaltung: Inhaltliche Analyse, Strukturierung und grafische Gestaltung von Präsentations-Folien (Seminar)

Dozenten:

Dorothee Schielein

Sprachen:

. DE

Zeitraum:

WS/SS

Inhalt:

Dieses Seminar soll den Studierenden helfen Präsentationen und Unterrichtsmaterial (für den eigenen Unterricht von zukünftigen Lehrenden) zu erstellen. Bei Präsentationen-Folien ist es Notwendig die Inhalt der Päsentation analytisch aufzuarbeiten und zu strukturieren. Denn erst durch einen klaren Inhaltlichen Aufbau und einer ansprechenden graphischen Gestaltung ist eine nachvollziehbare Argumentation gewährleistet.

In dem Seminar werden die Studierenden mit freigewählter Themen Vorlagen für eine Präsentation erstellen. Um den Sofwareeinsatz so unkompliziert wie möglich zu halten, wird die Umgesetzung der "Masterfolie" mit den Programmen MS Word und/oder PowerPoint durchgeführt. Die Vorraussetzung ist der Umgang mit diesen Programmen.

Literatur:

"Gestaltung, Typografie etc. – ein Handbuch" Damien und Claire Gautier, Niggli Verlag

Lehrveranstaltung: Interdisziplinarität: Kultur und Technik (Seminar)

Dozenten

Prof. Margarete Jarchow, Christian Elster

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Musik und Technik stehen in einem komplexen Verhältnis. Die technischen Eigenschaften von Aufnahme- und Abspielgeräten sowie von Kommunikationsmedien prägen Musikkulturen – zentrale Aspekte der Musikproduktion und -distribution ebenso wie den Gebrauch von Musik und ihrer Bedeutung im Alltag. Musikmedien wie LPs, CDs, Musikkassetten und digitale Audiodateien sowie dazugehörige Abspielgeräte wie Plattenspieler, iPods und Smartphones beeinflussen durch ihre Materialität und Haptik unseren Umgang mit Musik und sind oft hochgradig symbolisch aufgeladen. Sie stehen dabei in spezifischen Spannungsfeldern aus Kunst, Kultur, Technik und Ökonomie. Das Seminar möchte gegenwartsbezogen und historisch Zusammenhängen zwischen technischen Entwicklungen, kulturellen Praktiken und damit in Verbindung stehenden gesellschaftlichen Diskursen nachspüren.

Um den interdisziplinären Charakter des Seminars zu stärken, ist ein Gastvortrag mit anschließender Diskussion von Dipl.-Ing. Ingo Johannsen zu Vinyl und Polycarbonat (die Materialien von Schallplatte und CD) geplant.

Vorgesehen ist außerdem die Besichtigung eines Schallplattenpresswerks.

Literatur:

- Auswahl
 - -Benjamin, Walter (2000): Das Kunstwerk im Zeitalter seiner technischen Reproduzierbarkeit. Frankfurt am Main.
 - -Bull, Michael (2006): Investigating the culture of mobile listening. From Walkman to iPod. In: Barry Brown und Kenton O'Hara (Hg.): Consuming Music Together.New York, S. 131–150.
 - -DeNora, Tia (2000): Music in everyday life. Cambridge.
 - -Gehlen, Dirk von (2011): Mash-Up. Lob der Kopie. Frankfurt am Main.
 - -Hengartner, Thomas (2012): Technik Kultur Alltag. Technikforschung als

Alltagskulturforschung. In: Schweizerisches Archiv für Volkskunde, Jg. 108, S. 117-139.

-Wicke, Peter (2009): Der Tonträger als Medium der Musik. In: Holger Schramm (Hg.): Handbuch Musik und Medien. Konstanz: UVK-Verl.-Ges., S. 49–87.

Lehrveranstaltung: Interkulturelle Kompetenz/ Interkulturelle Komunikation. Grundlagen. (Seminar)

Dozenten:

Ernesto Martín

Sprachen:

DE

Zeitraum:

WS

ınınaıı:

Ziel des Seminars ist die kulturelle Sensibilisierung der Teilnehmer. Praxisnahe Fallbeispiele und Simulationen führen zur Stärkung des Bewusstseins für fremde Kulturen und deren Unterschiede. Die Vermittlung des notwendigen Wissens über die Kulturen und die Entwicklung von interkulturellen Handlungskompetenzen runden das Seminar ab.

Lernziele:

- 01. Kultur
- 02. Kulturelle Dimensionen
- 03. Interkulturelle Kommunikation
- 04. Fremdbild und Selbstbild
- 05. Kulturschock
- 06. Länderspezifische Orientierung, abhängig von der Zusammensetzung der Gruppe
- 07. Länderspezifische Orientierung abhängig, von der Zusammensetzung der Gruppe.

Literatur:

Wird im Seminar genannt.

Will be announced in lecture.

Lehrveranstaltung: Karrieremanagement (Vorlesung)

Dozenten:

Prof. Thomas Matzen

Sprachen:

DE

Zeitraum:

SS

Inhalt:

In der Vorlesung werden Inhalte zur Planung der eigenen Karriere gelehrt.

Insbesondere werden Persönlichkeitstypen und -merkmale betrachtet und eine Methodik zu Einschätzung der eigenen Persönlichkeit vermittelt.

Wichtige weitere Inhalte befassen sich mit den Themen:

- Planung und Vorbereitung von Bewerbungsunterlagen
- Vorbereitung auf Bewerbungsgespräche
- Verhaltensweisen in einem Assessment Center
- Grundlagen zur Vorbereitung auf Gehaltsverhandlungen

Literatur

aktuelle Literaturempfehlungen werden in der Vorlesung vermittelt relevant literature will be announced in lecture

Lehrveranstaltung: Kreativseminar: Improvisationstheater (Seminar)

Dozenten:

Mignon Remé

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt

In diesem Seminar wird mit Hilfe von Improvisationstechniken gezielt die Kreativität, Spontaneität und situative Flexibilität geschult sowie Sensibilität, Mut und Schnelligkeit. Durch Überwindung des 'inneren Zensors'' werden Hemmungen abgebaut, so dass die Teilnehmer einen neuen Zugang zu ihrer Kreativität finden und der Phantasie freien Lauf lassen können.

Darüber hinaus fördern die Spielsituationen die Kommunikationsfähigkeit der Teilnehmer, schaffen die Voraussetzung für erfolgreiche Koordination und Kooperation in einer Gruppe und damit für Teamfähigkeit.

Nicht zuletzt stärkt die Arbeit an Körperhaltung, Mimik, Gestik und Tonalität das Selbstvertrauen der Teilnehmer und verbessert somit ihr Auftreten bei Präsentationen oder Vorträgen.

Die Techniken des Improvisationstheaters fordern verschiedene Fähigkeiten der Seminarteilnehmer auf spielerische Weise:

- Die Teilnehmer müssen spontan auf immer neue Situationen reagieren und sich ihnen anpassen dies wird erreicht durch verschiedene Techniken, die Schnelligkeit und Reaktionsvermögen trainieren
- Durch ständig wechselnde Situationsvorgaben seitens der Seminarleiterin entwickeln die Teilnehmer ein hohes Maß an Flexibilität und Kreativität.
- Durch Statusarbeit (nach Keith Johnstone) bekommen die Teilnehmer Werkzeug an die Hand geliefert, ihre Kommunikation (verbal sowie k\u00f6rperlich) dem Gespr\u00e4chspartner und der Gespr\u00e4chssituation anzupassen.
- Einfache Schauspielübungen helfen den Teilnehmern, mehr Sicherheit im Auftreten zu gewinnen und Präsentationssituationen besser zu meistern.
- Die Teamfähigkeit der Teilnehmer wird bei fast allen Improvisationstechniken geschult, besonders aber bei Techniken, deren Focus auf aktivem Zuhören, Inspirieren des Partners und Annehmen und Aufbauen auf dessen Angeboten liegt.

Literatur:

Literaturhinweise werden zu Beginn des Seminars bekanntgegeben.

Literature will be announced at the beginning of the seminar.

Lehrveranstaltung: Kultur und Technik - Deutschsprachig (Seminar)

Dozenten:

Prof. Karl Wilhelm Böddeker

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Die Veranstaltung behandelt die übergeordneten Themen Wasser und Energie als komplementäre Voraussetzungen für Leben einerseits und für Zivilisation andererseits. Wasser und Energie sind nicht nur zentrale Inhalte ingenieurwissenschaftlicher Qualifikation, sondern sie prägen – nach Maßgabe von Verfügbarkeit und Nutzung – die menschliche Lebenswirklichkeit. Entsprechend unterschiedlich sind die Anforderungen, welche der Umgang mit ihnen stellt: Sie sollen das technisch Machbare realisieren (Fachkompetenz); sie müssen das sozial und ökologisch Erforderliche erkennen und einbeziehen (personale Kompetenz).

Die Veranstaltung möchte an Hand lebensnaher Einzelstudien (siehe Themenkatalog) personale Kompetenz im Umgang mit den Themen Wasser und Energie vermitteln, sowohl hinsichtlich der Bereitstellung als auch des Verbrauchs der beiden. Es zeigt sich, dass personale Kompetenz im Sinne von Urteilsfähigkeit neben elementarer Sachkenntnis ein Verständnis der relevanten kulturgeschichtlichen Zusammenhänge erfordert, – wie umgekehrt Kultur-geschichte nicht ohne Kenntnis der technischen Entwicklung darstellbar ist. Es zeigt sich überdies, dass fast alle Grundstoffe, mit denen wir unser irdisches Dasein gestalten, erst durch das Leben selbst entstanden sind, angefangen mit dem aus der Photosynthese hervorgehenden Sauerstoff.

Es ist wenig wahrscheinlich, dass technische Kompetenz ohne das Korrektiv der personalen Kompetenz unsere Welt befrieden wird. Themenkatalog

- 1 Technik und Kultur: Dualismus für Ingenieure
- 2 Die Welt im Zeitraffer: Die Erde, das Leben, der Mensch
- 3 Das kleinste Wunder der Natur: H₂O
- 4 Es ist genug da, aber es reicht nicht
- 5 Wasser und Zivilisation: Alter Orient und Naher Osten
- 6 Das Tote Meer. Das Dilemma des Umweltschutzes
- 7 Süßwasser aus dem Meer: Not macht erfinderisch
- 8 Trinkwasser: Menschenrecht? Handelsgut?
- 9 Über Energie als Alltagserfahrung
- 10 Angebot und Nachfrage: Weiter so, nur anders
- 11 Anfang und Ende des Lebens: CO₂
- 12 Biographie eines chemischen Zwielichts: Salpeter
- 13 Vom Segen und Unsegen der explosiven Stoffe

Literatur:

- Brockhaus-Redaktion: Brockhaus Mensch, Natur, Technik. Vom Urknall zum Menschen. Leipzig 1999.
- Jared Diamond: Guns, Germs, and Steel. The Fates of Human Societies. Norton, New York 1999.
- Vollrath Hopp: Wasser Krise? Wiley-VCH, Weinheim 2004
- Peter Gruss, Ferdi Schüth (Hrsg.): Die Zukunft der Energie, die Antwort der Wissenschaft. C. H. Beck, München 2008.
- Volker Quaschning: Erneuerbare Energien und Klimaschutz. Hanser, München 2008.
- Laurence C. Smith: Die Welt im Jahr 2050. Die Zukunft unserer Zivilisation. DVA, München 2011.

Lehrveranstaltung: Culture and Technology - in English (Seminar)

Dozenten:

Prof. Karl Wilhelm Böddeker

Sprachen:

EN

Zeitraum:

WS

Inhalt:

Culture and Technology (objectives)

Central themes of the course are water and energy, collectively viewed as being prerequisite to the origin of life as well as to the evolution of human civilization. Water and energy are key topics of any engineering curriculum, in addition to describing the human condition as it depends on the availability and usage of either. Objectives when having to deal with water or energy differ accordingly: To optimize the technologically feasible on the one hand (technical competence); to consider social and/or ecologic constraints on the other hand (personal competence).

By discussing a number of practical case studies (see list of topics) the course aims at drawing attention to the relevance of personal competence when water or energy are to be dealt with as commodities: providing them and using them responsibly. It appears that personal competence, in addition to basic factual knowledge, requires recognition of the pertinent historical and cultural circumstances which apply, – just as cultural history cannot be amended without considering the technological advances. It appears further that most of the base materials on which our everyday existence relies came to us through life itself, beginning with oxygen as by-product of photosynthesis.

If there is a message: it seems unlikely that technical competence will pacify mankind unless modified by personal competence.

List of topics

- 1 Dualism: Technology and culture
- 2 The world in quick motion: Earth, life, man
- 3 Nature's smallest wonder: H₂O
- 4 Enough is not enough
- 5 Water and civilization: Ancient vs. modern Near East
- 6 The Dead Sea. The dilemma of environmental protection
- 7 Fresh water from the sea. Need activates inventiveness
- 8 Water: Human right or merchandise?
- 9 Energy as everyday commodity
- 10 Offer and demand: Business as usual?
- 11 Life's beginning and end: CO₂
- 12 Biography of a chemical multi-talent: Niter
- 13 Explosives: Beneficial and malicious

Literatur:

- Brockhaus-Redaktion: Brockhaus Mensch, Natur, Technik. Vom Urknall zum Menschen. Leipzig
- Jared Diamond: Guns, Germs, and Steel. The Fates of Human Societies. Norton, New York 1999.
- Vollrath Hopp: Wasser Krise? Wiley-VCH, Weinheim 2004.
- Peter Gruss, Ferdi Schüth (Hrsg.): Die Zukunft der Energie, die Antwort der Wissenschaft. C. H.

Beck, München 2008.

- Volker Quaschning: Erneuerbare Energien und Klimaschutz. Hanser, München 2008.
- Laurence C. Smith: Die Welt im Jahr 2050. Die Zukunft unserer Zivilisation. DVA, München 2011.

Lehrveranstaltung: Logistische Systeme: Planung, Investitionsentscheidungen, Betrieb (Vorlesung)

Dozenten:

Dr. Jürgen W. Böse

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Ausgehend vom Systembegriff der Systemtheorie und von klassischen Lehrmeinungen zur "Logistik" als betrieblichem und wissenschaftlichem Aufgabenfeld werden einführend die wichtigsten organisatorischen und technischen Grundlagen von Logistiksystemen aus den Bereichen "Transport", "Umschlag" und "Lagerung" vorgestellt. Zur Verbesserung des (System-)Verständnisses und mit dem Ziel einer nachhaltigen Festigung der Lehrinhalte geschieht dies insbesondere unter Verwendung von Beispielen aus der betrieblichen Praxis sowie mit Hilfe einer umfassenden Analyse bestehender Systemvor- und -nachteile.

Darauf aufsetzend bildet die systemische Gestaltung von Logistiklösungen den Schwerpunkt der Veranstaltung, wobei planerische Aspekte -- sowohl in der Entwicklungsphase von Logistiksystemen als auch in der nachfolgenden Betriebsphase -- im Vordergrund stehen. Für eine Gestaltung der Systeme im Sinne ihrer Dimensionierung und Optimierung ist weniger das Verständnis der technischen Details von Bedeutung (i.d.R. sind technische Kenntnisse über die Hauptabmessungen der Systeme sowie über Geschwindigkeits- und Beschleunigungsparameter einzelner Systemkomponenten oder Komponententeile respektive der transportierten Objekte ausreichend) als vielmehr das Wissen um bewährte Planungsregeln und methodische Ansätze zur zielführenden Konkretisierung von Systemkomponenten oder Teilsystemen in ihrer Art und Anzahl. Bei den eingesetzten quantitativen Methoden stehen analytische Lösungen im Zentrum des Interesses.

Mit Blick auf die Bewertung entwickelter Systemalternativen werden im Rahmen der Veranstaltung verschiedene (gängige) Evaluationsmethoden diskutiert; im Besonderen widmet sich hier der inhaltliche Diskurs den aus der Betriebswirtschaftslehre bekannten Methoden der Investitionsrechnung.

Literatur:

- Arnold D., Furmans K. (2005): Materialfluss in Logistiksystemen, 4. Aufl., Springer, Berlin.
- Bitz M., Ewert J., Terstege U. (2012): Investition Multimediale Einführung in finanzmathematische Entscheidungskonzepte, 2. Aufl., Gabler, Wiesbaden.
- Jünemann R. (1989): Materialfluß und Logistik, Springer, Berlin.
- Rinza P., Schmitz H. (1992): Nutzwert-Kosten-Analyse: eine Entscheidungshilfe, VDI-Verlag, Düsseldorf.
- ten Hompel M., Schmidt T., Nagel, L. (2007): Materialflusssysteme Förder- und Lagertechnik, 3. Aufl., Springer, Berlin.

Dozenten:

Prof. Hans-Joachim Braun

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Die wissenschaftliche Disziplin Technikgeschichte beschäftigt sich mit der historischen Entwicklung der Technik in ihren sozio-ökonomischen und sozio-kulturellen Entstehungs-, Verwendungs- und Wirkungszusammenhängen. Nach einer kurzen Einführung in die Grundfragen der Technikgeschichte (Quellen, Methoden, Hauptfragestellungen) werden ausgewählte, zentrale Fragestellungen der technikgeschichtlichen Entwicklung im 20. Jahrhundert behandelt. Der Schwerpunkt wird auf Deutschland liegen, wobei aber den internationalen Verknüpfungen stets Beachtung geschenkt wird. Aktuelle Probleme werden in ihrer Genese untersucht. Dabei wird auch zu fragen sein, inwieweit Kenntnisse über die technische Entwicklung zur Lösung gegenwärtiger Probleme nützlich sein können. Hauptthemen: Erfindungen, erfolgreiche und gescheiterte Innovationsprozesse, Technologietransfer, große technische Systeme, Infrastruktur, Verkehr, Kommunikation, Umwelt, Wandel in den Produktionsprozessen, Rationalisierung, Mikroelektronik, Computerentwicklung.

Literatur:

Wird im Seminar auf Wunsch zur Verfügung gestellt. / Current biblography will be announced in lecture.

Lehrveranstaltung: Recht für Ingenieure (Vorlesung)

Dozenten:

Markus A. Meyer-Chory

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- Grundbegriffe und Systematik ingenieursspezifischen WirtschaftsPrivatrechts
- Grundzüge ausgewählter Bereiche ingenieursrelevanten Rechts national, international Werkvertragsrecht, Produkthaftung Markenrecht, Wettbewerbsrecht, Patentrecht, Arbeitsrecht, Gesellschaftsrecht
- Juristische Fallbearbeitung Übungsklausur
- Aktuelle Fälle Betrachtung, rechtliche Würdigung

Literatur

Notwendiger Gesetztestext (in Klausur erlaubt):

Bürgerliches Gesetzbuch 72. Auflage, 2013, dtv Beck-Texte 5001, ISBN 978-3-406-65707-8

Empfohlene Gesetzestexte:Arbeitsgesetze 83. Auflage, 2013 dtv Beck-Texte 5006 ISBN 978-3-406-65689-7 Handelsgesetzbuch 54. Auflage, 2013 dtv Beck Texte 5002 ISBN 978-3-406-65083-3 Gesellschaftsrecht, 13. Auflage, 2013 dtv Beck Texte 5585 ISBN 978-3-406-64502-0 Wettbewerbsrecht, Markenrecht und Kartellrecht, 33. Auflage, 2013 dtv Beck Texte ISBN 978-3-406-65212-7

Empfohlene Literatur:

Vock, Willi, Recht der Ingenieure, 1. Auflage 2012, Boorberg Verlag , ISBN-10:3-415-04535-8 --- EAN:9783415045354

Meurer Rechtshandbuch für Architekten und Ingenieure 1...Auflage -- erscheint Anfg 2014 Werner Verlag ISBN 978-3-8041-4342-5

Eisenberg / Gildeggen / Reuter / Willburger Produkthaftung 2. Auflage - erscheint Anfg 2014 Oldenbourg Verlag - ISBN 978-3-486-71324-4

ENDERS/HETGER, Grundzüge der betrieblichen Rechtsfragen, 4. Auflage, 2008 Richard Boorberg Verlag - ISBN 978-3-415-04005-2 Müssig, Peter, Wirtschaftsprivatrecht, 15. Auflage, 2012, C.F. Müller UTB - ISBN 978-3-81149476-3 Schade, Friedrich, Wirtschaftsprivatrecht, 2. Auflage 2009, Kohlhammer - ISBN 978-3-17-021087-5

Lehrveranstaltung: Soziologie des Ingenieurberufs (Seminar)

Dozenten:

Dr. Wolfgang Neef

Sprachen:

. DE

Zeitraum:

WS

Inhalt:

- Geschichte des Ingenieurberufs
- Gesellschaftliche Rolle der Ingenieure
- Aktuelle Berufssituation
- Verantwortung im Ingenieurberuf
- Subjektive Aspekte: Gender, Persönlichkeitsstruktur
- Interessenvertretung im Betrieb

- Neef, Wolfgang: Ingenieure Entwicklung und Funktion einer Berufsgruppe, Köln 1982
- Neef, W. und T. Pelz (Hrsg.): Ingenieurinnen und Ingenieure für die Zukunft. Berlin, TU, 1997
- Wege und Irrwege in die Wissensgesellschaft. BDWi-Studienheft Nr. 7, Marburg 2011-08-09
- Ullrich, Otto: Weltniveau. In der Sackgasse des Industriesystems. Berlin 1992.

Lehrveranstaltung: Soziologie des Internets (Seminar)

Dozenten:

Prof. Gabriele Winker

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Es ist inzwischen in der Soziologie weitgehend akzeptiert, dass Technologien sozial geformt sind. Entsprechend dieses Verständnisses können verschiedene Angebote im Internet nicht nur unterschiedlich genutzt werden, sondern auch ihre konkrete Konstruktion ist nicht auf eine einzige korrekte Form begrenzt. Gleichzeitig haben technische Artefakte wie das Internet mächtige Effekte und Auswirkungen auf das alltägliche Leben. Wie genau diese Ko-Konstruktionen von Geschlecht und Technik aussehen, wird in diesem Seminar am Beispiel des Internets in Theorie und Praxis verfolgt. In einem ersten Schritt geht es darum, die Entstehung, Verbreitung und Nutzung des Internet zu analysieren. In einem zweiten Schritt werden unterschiedliche Anwendungsfelder mit ihren spezifischen Online-Angeboten in den Blick genommen wie beispielsweise E-Commerce, EGovernment, E-Learning, Online-Beratung, Online-Communities oder Online-Spiele.

Literatur:

- Bijker, Wiebe E.; Law, John (eds.): Shaping Technology Building Society. Studies in Sociotechnical Change. Cambridge. London, 1992
- Döring, Nicola: Sozialpsychologie des Internet. Die Bedeutung des Internet für Kommunikationsprozesse, Identitäten, soziale Beziehungen und Gruppen. 2., vollständig überarb. und erw. Aufl., Göttingen, 2003
- Latour, Bruno: We have never been modern. 5th pr., Harlow, Essex, 2000
- Norris, Pippa: Digital Divide. Civic Engagement, Information Poverty, and the Internet Worldwide. Cambridge, 2001
- Oudshoom, Nelly; Pinch, Trevor (eds.): How Users Matter. The Co-Construction of Users and Technologies. Cambridge, London, 2003
- Wellman, Barry; Haythornthwaite, Caroline (eds.): The Internet in Everyday Life. Oxford, 2002

Lehrveranstaltung: Technik in der Kunst (Seminar)

Dozenten:

Dr. Wolf Jahn

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Das Seminar Kunst und Technik verfolgt die historisch weit zurückreichende Beschäftigung von Künstlern mit technischen Errungenschaften. Wie geht Technik in die Gesellschaft ein und wie bestimmt sie das Bild des Menschen? - Fragen, die bis heute Künstler beschäftigen und den Kern ihrer Arbeit ausmachen. Fasziniert von Erfindungen wie zum Beispiel dem Automaten oder den neuen, auf hoher Geschwindigkeit basierenden Fortbewegungsmitteln haben diese das Bild der Künste entscheidend mitgeprägt. William Turner malt als erster eine Lokomotive, Adolph Menzel zeichnet mit am Bild der modernen Industriearbeiter. Ihre Bilder und die Werke vieler anderer Künstler haben Technik kritisch gesehen, sie glorifiziert, in mythische Bereiche verschoben oder in ambivalente Zukunftsvisionen verwandelt. Kunst und Technik meint von daher keine Auseinandersetzung mit künstlerischen Techniken. Das Seminar geht vielmehr der Frage nach wie sich Künstler dem neuzeitlichen Phänomen stellen, dass neue Technik in entscheidendem Maße das Bild von Mensch und Kultur zeichnet.

Literatur:

- Horst Bredekamp: Antikensehnsucht und Maschinenglauben, Berlin 2002

Lehrveranstaltung: Technik, Management, gesellschaftliche Verantwortung (Seminar)

Dozenten:

Dr. Torsten Meiffert

Sprachen:

DE

Zeitraum:

WS

Inhalt

Eines der wichtigsten Themen der Gegenwart ist wohl die Selbstgefährdung der Weltgesellschaft durch eine die Natur überstrapazierende Ökonomie. Mitverursacht wird diese Selbstgefährdung durch die Wechselwirkungen und Nebenfolgen des technischen Fortschritts. Seine Erfolge beruhen vor allem auf einem monokausalen Verständnis der Naturprozesse.

In der Veranstaltung wird die Entwicklung dieses Umgangs mit der Natur und ihren Ressourcen betrachtet. Das ihm zugrunde liegende Weltbild und seine Eigenarten zu verstehen, ist eine wichtige Voraussetzung, um sich in den aktuellen ökologischen und ökonomischen Problemlagen orientieren zu können.

- Was ist das besondere Erfolgsrezept des naturwissenschaftlich-technischen Kausalitätsdenkens?
- Welche Ansätze eines die Vielfalt von Ursache- und Wirkungsnetzen berücksichtigenden Natur- und Technikverständnisses sind schon erkennbar?

Ein weiterer Schwerpunkt der Veranstaltung wird darauf liegen, wie gesellschaftliche Institutionen und vor allem am Markt agierende Unternehmen auf die Selbstgefährdung reagieren. Auch hier haben wir es mit komplexen Wechselwirkungen zu tun, mit denen Organisationen erst in Ausnahmefällen angemessen umgehen.

- Was hindert Organisationen daran, sich offensiv mit den Selbstgefährdungen des Fortschritts zu beschäftigen?
- Welche Denk- und Verhaltensmuster bestimmen Unternehmen und Organisationen?
- Wie können defensive Routinen erkannt und verändert werden?
- Wie gelingt es Unternehmen, mit dem Widerspruch zwischen kurzfristigem Erfolgsdenken und langfristig-nachhaltiger Unternehmensentwicklung umzugehen?

Schließlich wird in der Veranstaltung der Kontext, in dem Ingenieure als Fach- und Führungskräfte agieren, im Hinblick auf Führung, Kommunikation und Motivation beleuchtet. Nach wie vor scheint die Komplexität gesellschaftlicher Verhältnisse eher auf den einzelnen Menschen "abgedrückt" zu werden als dass sie im Unternehmen strategisch bearbeitet wird. Unter dem Stichwort Sinnmanagement wird das Spannungsfeld betrachtet, in dem (nicht nur) Ingenieure als Führungskräfte stehen, wenn sie unternehmerische Entscheidungen treffen, kommunizieren und umsetzen.

- Wie können Führungskräfte dazu beitragen, kontextübergreifende Handlungsspielräume zur nachhaltigen Entwicklung zu schaffen bzw. zu nutzen?
- Wie können Fach- und Führungskräfte unterschiedliche und widersprüchliche "Weltbilder", Interessen und Bedürfnisse (auch die eigenen) ausbalancieren?

Literatur:

- WBGU: Welt im Wandel. Gesellschaftsvertrag für eine Große Transformation. Hauptgutachten, Berlin 2011, http://www.wbgu.de
- Beck, Ulrich: Weltrisikogesellschaft. Frankfurt/M, 2008
- Senge, Peter et al.: The Necessary Revolution. New York 2008
- Fachartikel, die zu Beginn der Veranstaltung bekannt gegeben werden./ Current biblography will be announced in lecture.

Lehrveranstaltung: Umwelt und Gesellschaft (Vorlesung)

Dozenten:

Dr. Michael Florian

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Die Vorlesung bietet eine umweltsoziologische Einführung in das Wechselverhältnis zwischen Umwelt und Gesellschaft. Die Umweltsoziologie beschäftigt sich mit dem gesellschaftlichen Umgang mit Natur, mit den Wirkungen der Gesellschaft auf die Umwelt und mit der Art und Weise wie die Folgen sozialer Eingriffe in die natürliche Umwelt in der Gesellschaft wahrgenommen, kommunikativ verarbeitet und problematisiert werden. Schwerpunkte der Vorlesung bilden dabei unter anderem folgende Themenstellungen: Vergleiche unterschiedlicher theoretischer Perspektiven der Umweltsoziologie, empirische Untersuchungen zum Umweltbewusstsein in Deutschland, Analysen zum Verhältnis von Umwelteinstellungen und Umweltverhalten, Untersuchungen zur Entwicklung der Umweltbewegung in Deutschland, Probleme betrieblichen Umwelthandelns und der staatlichen Umweltpolitik sowie Analysen zum Leitbild der Nachhaltigkeit und den Einflussmöglichkeiten umweltpolitischer Instrumente.

Literatur:

Brand, Karl-Werner (2014): Umweltsoziologie. Entwicklungslinien, Basiskonzepte und Erklärungsmodelle. Weinheim [u.a.]: Beltz Juventa. Brand, Karl-Werner; Reusswig, Fritz (2007): Umwelt. In: Hans Joas (Hg.): Lehrbuch der Soziologie. 3., überarb. und erw. Aufl. 3. Aufl. Frankfurt, M, New York: Campus-Verlag, S. 653-672.

Diekmann, Andreas; Jaeger, Carlo C. (Hg.) (1996): Umweltsoziologie. Sonderheft 36/1996 der Kölner Zeitschrift für Soziologie und Sozialpsychologie. Opladen: Westdt. Verl.

Diekmann, Andreas; Preisendörfer, Peter (2001): Umweltsoziologie. Eine Einführung. Reinbek bei Hamburg: Rowohlt-Taschenbuch-Verlag.

Gross, Matthias (2001): Die Natur der Gesellschaft. Eine Geschichte der Umweltsoziologie. Weinheim: Juventa.

Groß, Matthias (Hg.) (2011): Handbuch Umweltsoziologie. Wiesbaden: VS Verlag für Sozialwissenschaften.

Huber, Joseph (2002): Umweltsoziologie. In: Günter Endruweit und Gisela Trommsdorff (Hg.): Wörterbuch der Soziologie. 2. Aufl. Stuttgart: Lucius & Lucius. S. 641-645.

Kuckartz, Udo; Rheingans-Heintze, Anke (2006): Trends im Umweltbewusstsein. Umweltgerechtigkeit, Lebensqualität und persönliches Engagement. Herausgegeben vom Umweltbundesamt. Wiesbaden: VS Verlag für Sozialwissenschaften.

Voss, Martin (Hg.) (2010): Der Klimawandel. Sozialwissenschaftliche Perspektiven. Wiesbaden: VS Verlag für Sozialwissenschaften. Weber, Melanie (2008): Alltagsbilder des Klimawandels. Zum Klimabewusstsein in Deutschland. Wiesbaden: VS Verlag für Sozialwissenschaften.

Lehrveranstaltung: Umweltpolitik und Nachhaltigkeit (Seminar)

Dozenten:

Monika Griefahn

Sprachen:

DF

Zeitraum:

WS/SS

Inhalt:

Das Seminar verdeutlicht anhand von Beispielen aus der Praxis, dass wir für eine nachhaltige Entwicklung von Umwelt und Gesellschaft eine Rahmengesetzgebung der Politik brauchen: für gesunde Luft, sauberes Wasser, Vielfalt von Tieren und Pflanzen, soziale Standards und ausreichende Ressourcensicherung für alle in der Welt. Wir betrachten Beispiele wie das Erneuerbare Energien Gesetz aus dem Jahr 2000 und dessen Novellierungen bis heute. So können wir Gestaltungsmöglichkeiten von Politik aufzeigen, analysieren, wie sie gewirkt haben und auch kritisch mögliche Nebenwirkungen hinterfragen.

Wir betrachten die verschiedenen Ebenen von Politik und Verwaltung mit ihren

Entscheidungsstrukturen bei Umwelt und Nachhaltigkeit ebenso wie weitere einflussgebende Akteure von Gewerkschaften über Nichtregierungsorganisationen bis hin zum Verbraucher. Welche Wechselwirkungen gibt es, wer hat eigentlich das Sagen, welche Rolle spielen Kultur und Werte? Eingehen wird das Seminar auch auf die Empfehlungen des Rates für Nachhaltige Entwicklung, der Rohstoffknappheit zu begegnen und zu einer 100-prozentigen Recyclingquote zu kommen. Wie müssen Produkte und Produktionsprozesse gestaltet sein, damit dieses Ziel erreicht werden kann? Letztlich nähern wir uns mit all diesen Teilbereichen einer zentralen Frage: Wie sieht die Welt aus, in der wir leben wollen?

Ziel dieses Seminars ist es, den Blick gerade für Ingenieurinnen und Ingenieure für Einflussfaktoren außerhalb des eigenen Tätigkeitsbereichs zu öffnen und deren Zusammenspiel zu analysieren. Mit Hilfe eines engen Praxisbezugs (insbesondere durch die Themen und durch externe Referenten) und mit Hilfe des Austausches untereinander soll vermittelt werden, was technische Entwicklungen berücksichtigen müssen, um in einer nachhaltigen Zukunft Bestand zu haben.

Literatur:

Eine Reihe grundlegender Monografien sowie wichtige Fachzeitschriften und Internetseiten werden im Seminar bekannt gegeben.

Lehrveranstaltung: Unternehmensstrategien (Vorlesung)

Dozenten:

Prof. Thomas Wrona

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Einführung in die Theorie und Praxis des Strategischen Managements:

Vermittelt werden verschiedene Arten von Unternehmensstrategien, ausgesuchter Methoden zur Analyse der externen sowie internen Einflussfaktoren auf die Unternehmung und der Verlauf des strategischen Managementprozesses. Das erlernte Wissen wird anhand von ausgesuchten Fallstudien in der Vorlesung praxisnah angewandt, um Studenten frühzeitig mit dem Einsatz von Analysetechniken vertraut zu machen. Ein Gastvortrag aus der Unternehmenspraxis ergänzt den Inhalt der Vorlesung.

Literatur:

Bamberger, I. and T. Wrona (1996). "Der Ressourcenansatz und seine Bedeutung für die strategische Unternehmensführung." Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung (zfbf) 48 (2): 130-153.

Bamberger, I. and T. Wrona (2004). Strategische Unternehmensführung. Strategien, Systeme, Prozesse. München, Vahlen.
Johnson, G., K. Scholes, et al. (2006). Exploring corporate strategy. Text and cases. Harlow, Financial Times Prentice Hall.
Mintzberg, H. (1987). "The Strategy Concept I: Five Ps for Strategy." California Management Review(Fall): 11-24.
Müller-Stewens, G. and C. Lechner (2005). Strategisches Management – Wie strategische Initiativen zum Wandel führen. Stuttgart.
Porter, M. E. (1980). Competitive strategy. Techniques for analyzing industries and competitors New York, Free Press.
Porter, M. E. (1997). Wettbewerbsstrategie - Methoden zur Analyse von Branchen und Konkurrenten. Frankfurt a.M.
Steinmann, H. and G. Schreyögg (2005). Management - Grundlagen der Unternehmensführung. Wiesbaden, Gabler.
Welge, M. K. and A. Al-Laham (2008). Strategisches Management. Grundlagen – Prozess – Implementierung. Wiesbaden, Gabler.
Wheelen, T. L. and D. J. Hunger (2012). Strategic management and business policy. Toward global sustainability. Boston/Columbus et al., Pearson.

Lehrveranstaltung: WirtschaftsPrivatRecht (Vorlesung)

Dozenten:

Markus A. Meyer-Chory

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- -Grundzüge des Deutschen Rechtssystems
- Grundbegriffe und Systematik des Wirtschaftsprivatrechts
- -Ausgewählte Bereiche des Zivilrechts einschließlich Handels und Arbeitsrechte
- -Methodik juristischer Fallbearbeitung
- -Aktuelle Fälle -Betrachtung, rechtliche Würdigung

Literatur:

Notwendig

(in Klausur erlaubt):BGB - Bürgerliches Gesetzbuch , möglichst akutelle Auflage , dtv Beck-Texte 5001, Empfohlen:

nENDERS/HETGER

Grundzüge der betrieblichen Rechtsfragen

4. Auflage, 2008

Richard Boorberg Verlag - ISBN 978-3-415-04005-2

http://www.beck-shop.de/Enders-Hetger-Grundz%C3%BCge-betrieblichen-Rechtsfragen/productview.aspx?product=36632&utm nMüssig, Peter

Wirtschaftsprivatrecht

15. Auflage, 2012

C.F. Müller UTB - ISBN 978-3-81149476-3

http://www.beck-shop.de/Muessig-Wirtschaftsprivatrecht/productview.aspx?product=11974019

nGildeggen, Rainer, pp

Wirtschaftsprivatrecht

2., aktualisierte und erweiterte Auflage 2013. Buch. XXI, 406 S. Kartoniert

Oldenbourg ISBN 978-3-486-71662-7

http://www.beck-shop.de/Gildeggen-Lorinser-Willburger-Broenneke-Eisenberg-Harriehausen-Jautz-Reuthal-Schmitt-Schweizer-Tavakoli-

Thaele-Tybusseck-Lehr-Wi/productview.aspx?product=11808371

nLipperheide, Peter J.

Wirtschaftsprivatrecht

1. Auflage 2009

expert-Verlag - ISBN 978-3-8169-2770-9

http://www.beck-shop.de/Lipperheide-Wirtschaftsprivatrecht/productview.aspx?product=34250

nRing, Gerhard

Wirtschaftsrecht

1. Auflage 2013

Oldenbourg Verlag - ISBN 978-3-486-58664-0

http://www.beck-shop.de/Ring-Wirtschaftsrecht/productview.aspx?product=690200

Lehrveranstaltung: Wirtschaftsethik (Vorlesung)

Dozenten:

Dr. Michael Florian

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Lehrveranstaltung im Block I Betrieb und Management

Wirtschaftsethik befasst sich mit der moralischen Bewertung wirtschaftlichen Handelns und der Anwendung ethischer Prinzipien auf den Bereich der Wirtschaft. Damit zielt die Wirtschaftsethik auf alle gesellschaftlichen Aktivitäten, die mit der Entwicklung. Produktion und Verteilung sowie mit dem Austausch und Verbrauch knapper Güter und Dienstleistungen verbunden sind. Während sich die Ethik als akademische Disziplin mit der Begründung moralischer Urteile beschäftigt und sich auch praktisch für ein entsprechend legitimierbares Verhalten einsetzt, ist Moral an eine besondere Form der Kommunikation gebunden, die Achtung oder Missachtung zum Ausdruck bringt und Verhaltensweisen aufgrund bestimmter Wertvorstellungen als "richtig" oder "falsch", "gut" oder "böse" beurteilt. Seit der Jahrtausendwende haben zahlreiche, zum Teil spektakuläre Korruptionsaffären und Wirtschaftsskandale die öffentliche Diskussion über die Relevanz der Wirtschaftsethik, über das "richtige" Verhältnis zwischen Profit und Moral, zwischen Effizienz und Legitimität ökonomischer Praktiken und über die soziale Verantwortung von Unternehmen ("Corporate Social Responsibility", "Corporate Citizenship") angeheizt. Die Vorlesung bietet eine einführende kritische Auseinandersetzung mit relevanten theoretischen Konzepten und praktischen Umsetzungsproblemen der Wirtschaftsethik, die anhand ausgewählter Fallbeispiele analysiert werden.

Aßländer, Michael S. (Hg.) (2011): Handbuch Wirtschaftsethik. Stuttgart, Weimar: Metzler

Beckert, Jens (2010): Sind Unternehmen sozial verantwortlich? In: Olaf J. Schumann, Alexander Brink und Thomas Beschorner (Hg.): Unternehmensethik. Forschungsperspektiven zur Verhältnisbestimmung von Unternehmen und Gesellschaft. Marburg: Metropolis, S. 109-

Beschorner, Thomas; Hollstein, Bettina (Hg.) (2005): Wirtschafts- und Unternehmensethik. Rückblick, Ausblick, Perspektiven. München:

Corporate Citizenship. In: Aus Politik und Zeitgeschichte 58 (31) vom 28. Juli 2008

Enderle, Georges; Homann, Karl; Honecker, Martin (Hg.) (1993): Lexikon der Wirtschaftsethik. Freiburg, Basel, Wien: Herder.

Hiß, Stefanie (2006): Warum übernehmen Unternehmen gesellschaftliche Verantwortung? Ein soziologischer Erklärungsversuch.

Frankfurt/Main [u.a.]: Campus Verlag

Homann, Karl; Lütge, Christoph (2005): Einführung in die Wirtschaftsethik. 2. Aufl. Münster: LIT

Lenk, Hans; Maring, Matthias (Hg.) (1992): Wirtschaft und Ethik. Stuttgart: Reclam

Luhmann, Niklas (1993): Wirtschaftsethik - als Ethik? In: Josef Wieland (Hg.): Wirtschaftsethik und Theorie der Gesellschaft. Frankfurt am Main: Suhrkamp, S. 134-147.

Noll, Bernd (2002): Wirtschafts- und Unternehmensethik in der Marktwirtschaft. Stuttgart: Kohlhammer.

Raupp, Juliana; Jarolimek, Stefan; Schultz, Friederike (Hg.) (2011): Handbuch Corporate Social Responsibility

Kommunikationswissenschaftliche Grundlagen, disziplinäre Zugänge und methodische Herausforderungen. VS Verlag für Sozialwissenschaften

Schranz, Mario: Wirtschaft zwischen Profit und Moral. Wiesbaden: VS Verlag für Sozialwissenschaften, 2007

Suchanek, Andreas (2007): Ökonomische Ethik. 2. Aufl. Tübingen: Mohr Siebeck/UTB

Ulrich, Peter (2008): Integrative Wirtschaftsethik. Grundlagen einer lebensdienlichen Ökonomie. 4. Aufl. Bern: Haupt

Wieland, Josef (1999): Die Ethik der Governance. Marburg: Metropolis-Verlag

Lehrveranstaltung: Wissenschaftliches Arbeiten (Seminar)

Dozenten:

Thomas Hapke, Dr. Birte Schelling

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Die Lehrveranstaltung bietet eine Hinführung zu den vielfältigen Aspekten wissenschaftlichen Arbeitens: Themenfindung, Fachinformation, Wissensorganisation, Schreiben, Präsentieren, Publizieren. Anregungen zum Nachdenken über eigene Lern-, Informations- und Schreibprozesse - ergänzt durch praktische Empfehlungen und Tipps - erleichtern den Einstieg in die Erstellung von Bachelor- und Masterarbeiten, Arbeiten, die durchaus auch Erfüllung bringen und Spass machen können.

Themen des Seminars sind insbesondere

- Wissenschaft, Lernen und Arbeiten: Einführung, Organisatorisches, Kennzeichen von Wissenschaft:
 Wie entsteht wissenschaftliches Wissen? Lerntheorien und Lernpraxis, Arbeitsplanung, Themenfindung, Zeitmanagement,
 Besonderheiten wissenschaftlichen Arbeitens von Ingenieuren
- Fachinformation finden: Volltexte und Bibliotheks-Ressourcen, Fach-Datenbanken http://www.tub.tu-harburg.de/fachinformation/informieren-tipps-zum-ueberleben/
- Fachliteratur verwalten: http://www.tub.tu-harburg.de/publizieren/literaturverwaltung/ Wissensorganisation und Erstellung von Publikationen mit Citavi
- Richtig zitieren und Plagiate vermeiden
- Präsentationen vorbereiten und durchführen
- Wissenschaftliches Schreiben: Formale und praktische Anforderungen an wissenschaftliche Schreibprozesse im Ingenieurbereich, Warum schreiben? Kriterien für gutes wissenschaftliches Schreiben, Themen finden, Material sammeln, Strukturierungsmethoden, inhaltliche Planung, Lesen

und Exzerpieren, Textüberarbeitung

• Persönliche Auseinandersetzung mit dem wissenschaftlichen Schreiben: Zuversicht und vielleicht sogar Freude am Schreiben bekommen! Entdecken, was Sie persönlich als Schreiber/in ausmacht, und Methoden vorstellen und ausprobieren, die hilfreich sind, um ins Schreiben zu kommen (Free-Writing) und die eigenen Gedanken zu strukturieren (Mind-Mapping).

Literatur:

- Semesterapparat "Wissenschaftliches Arbeiten" in der TU-Bibliothek: http://www.tub.tuharburg. de/service/semesterapparate/?semapp=sem+wissa&semappname=Wissenschaftlich es%20Arbeiten
- 2. Weblog Wissenschaftliches Arbeiten der TU-Bibliothek: http://www.tub.tu-harburg.de/wissenschaftliches-arbeiten/
- 3. Online-Tutorial VISION der TU-Bibliothek zum wissenschaftlichen Arbeiten: http://www.vision.tu-harburg.de
- Studieren zwei null Webportal zum wissenschaftlichen Arbeiten: http://www.studierenzweinull.de/
- 5. LOTSE http://lotse.uni-muenster.de/ingenieurwissenschaften/index-de.php?location=0
- 6. Werner Sesink: Einführung in das wissenschaftliche Arbeiten : inklusive E-Learning, Web-Recherche, digitale Präsentation u.a. 9., aktualisierte Aufl. München : Oldenbourg, 2012.
- 7. Judith Theuerkauf: Schreiben im Ingenieurstudium : effektiv und effizient zur Bachelor-, Master- und Doktorarbeit. Paderborn : Schöningh, 2012.
- Biedermann, Wieland u.a.: Forschungsmethodik in den Ingenieurwissenschaften: Skript vom Lehrstuhl für Produktentwicklung, Prof. Dr.-Ing. Udo Lindemann, Technische Universität München (TUM), 2012. http://www.pe.mw.tum.de/fileadmin/w00bft/www/pdf/skript_forschungsmethodik_ingenieur.pdf
 - 1. Course Reserves Collection "Scholarly Research Methods" in the TUHH library: http://www.tub.tu-harburg.de/en/service/course-reserve-collections/?semapp=sem+wissa&semappname=Wissenschaftliches%20Arbeiten
 - 2. Scholarly research methods via TUHH library website: http://www.tub.tu-harburg.de/en/subject-information/scholarly-research-methods/
 - 3. VISION Online-Tutorial on research methods by the TUHH library: http://www.vision.tu-harburg.de
 - 4. Scientific papers and presentations / Martha Davis. 3. ed. Amsterdam: Elsevier / Academic Press, 2013. http://www.sciencedirect.com/science/book/9780123847270
 - 5. Writing for science and engineering: papers, presentations and reports / Heather Silyn-Roberts. 2nd ed. Amsterdam: Elsevier, 2013. http://www.sciencedirect.com/science/book/9780080982854
 - 6. How to research / Loraine Blaxter, Christina Hughes and Malcolm Tight. Maidenhead : Open Univ. Press, 2010.
- 7. Managing information for research : practical help in researching, writing and designing dissertations / Elizabeth Orna and Graham Stevens. Maidenhead : Open University Press McGraw-Hill, 2009.
- 8. Writing scientific research articles: strategy and steps/Margaret Cargill and Patrick O'Connor. Chichester: Wiley-Blackwell, 2009.

Lehrveranstaltung: Zeit- und Selbstmanagement (Seminar)

Dozenten:

Sybille Hausburg

Sprachen:

DE

Zeitraum:

WS/SS

Inhalt:

Themen

- des Seminars sind:
- Einordnung der Begrifflichkeiten von Zeit- und Selbstmanagement
- Vergleich verschiedener Konzepte des Selbstmanagements
- Bestandsaufnahme in der Gruppe hinsichtlich individuellem Zeit- und Selbstmanagement
- Selbsteinschätzung/ persönliche Zielsetzung und Planung/ Stärken-Schwächen-Analyse

- Einblick in die Stressforschung, Stressoren, Stresssymptome und Auswirkungen, Disstress und Eustress
- Stressbewältigungsstrategien im Hinblick auf studentische Erfahrungszusammenhänge
- Zeitmanagement: Der persönliche Umgang mit Zeit/ Individuelle Störfaktoren
- Das Tagesprotokoll als Analyseinstrument des individuellen Arbeitsverhaltens
- Motivation und Selbstmotivation, extrinsische und intrinsische Faktoren, Selbstwirksamkeit und Selbstregulation
- Methoden des Umgangs und der Vermeidung von Antriebsschwäche (Innerer Schweinehund) und Prokrastination (Aufschieben)
- Der Biorhythmus: Leben und Arbeiten mit der biologischen Leistungskurve
- Prioritätenmanagement: versch. Methoden der Priorisierung
- verschiedene Methoden der Zeitplanung (Zeit und Inhalts bezogen), Koordination paralleler Planungsziele/ die Al PEN-Methode
- Hinweise und Anregungen zur persönlichen Arbeitsorganisation

Die Referatsthemen ergänzen die Seminarinhalte durch die Vorstellung konkreter Handlungs-optionen und optimierter Arbeitstechniken.

Themen der Referate sind z.Bsp.:

- Berufliche Orientierung, Praktika und Auslandsaufenthalte
- Prüfungen: Effektive Prüfungsvorbereitung/ mündliche und schriftliche Prüfungen meistern
- Arbeiten und Lernen allein und in Kooperation, Kriterien effizienter Teamarbeit
- Studentisches Planungsmodell für erfolgreiche Lern- und Arbeitsprozesse
- Schreiben wissenschaftlicher Arbeiten/ Schnellschreiben mit Zehnfingersystem: Trainigsprogramme zum optimierten Schreiben
- Effektive und effiziente Literatur- und Informationsrecherche in den Ingenieurwissenschaften
- Rationelle Lesetechniken: Schneller lesen, mehr behalten
- Grundlagen des Projektmanagements
- Zeitmanagement und Arbeitsorganisation: Wie ich die Dinge geregelt kriege

Literatur:

Allen, David: Wie ich die Dinge geregelt kriege (Getting Things done), Piper Verlag 2012

Corsten, Hans u.a.: Technik des wissenschaftlichen Arbeitens, Oldenbourg Verlag 2008

Echterhoff, Gerald u.a.: Projekt- und Zeitmanagement, Klett Verlag 2006

Heister, Werner: Studieren mit Erfolg: Effizientes Lernen und Selbstmanagement: in Bachelor-,

Master- und Diplomstudiengängen, Schäffer-Poeschel-Verlag 2009

Heister, Werner u.a.: Studieren mit Erfolg: Prüfungen meistern. Klausuren, Kolloguien,

Präsentationen, Bewerbungsgespräche; Schäffer-Poeschel-Verlag 2007

Jäger, Roland: Selbstmanagement und persönliche Arbeitstechniken, Wettenberg Verlag 2007

Metzger, Christoph: Lern- und Arbeitstechniken, Cornelsen Verlag 2007

Peirick, Christian: Rationelle Lesetechniken, Bock Verlag 2008

Rost, Friedrich: Lern- und Arbeitstechniken für das Studium, VS Verlag für Sozialwissenschaften 2008

Seiwert, Lothar: Noch mehr Zeit für das Wesentliche. Zeitmanagement neu entdecken, Goldmann Verlag 2009

Stollreiter, Marc u.a.: Stress-Management Das WAAGE-Programm, Beltz Verlag 2000

<u>Titel</u>	<u>Typ</u>	SWS
Demonstration elektrotechnischer Experimente	Vorlesung	1
Werkstoffe der Elektrotechnik	Vorlesung	2
Werkstoffe der Elektrotechnik (Übung)	Gruppenübung	2

Modulverantwortlich:

Prof. Manfred Eich

Zulassungsvoraussetzung:

Allgemeine Hochschulzugangsberechtigung

Empfohlene Vorkenntnisse:

Physik und Mathematik auf Abiturniveau

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können Aufbau und strukturelle Eigenschaften der in der Elektrotechnik eingesetzten Werkstoffe erklären. Sie können die Relevanz der mechanischen, elektrischen, thermischen, dielektrischen, magnetischen und chemischen Eigenschaften von Werkstoffen mit Bezug auf die Anwendungen in der Elektrotechnik erläutern.

Fertiakeiten:

Die Studierenden können geeignete Beschreibungsmodelle identifizieren, diese mathematisch anwenden, Näherungslösungen ableiten und Einflussfaktoren auf die Performance von Materialien in elektrotechnischen Anwendungen einschätzen.

Personale Kompetenzen:

Sozialkompetenza

Die Studierenden können in Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Übungen).

Selbstständigkeit:

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu stellen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen wie klausurnahe Aufgaben effektiv überprüfen. Sie können ihr Wissen mit den Inhalten anderer Lehrveranstaltungen verknüpfen.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht

Lehrveranstaltung: Demonstration elektrotechnischer Experimente (Vorlesung)

Dozenten:

Dr. Wieland Hingst

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Themenschwerpunkte:

- Spannungen natürlichen Ursprungs
- Oszilloskop
- Charakterisierung von Signalen
- 2-Pole
- 4-Pole
- Leistung
- Anpassung
- Induktive Kopplung
- Resonanz
- HF-Technik
- Transistorschaltungen
- Messtechnik
- Materialien für die ET
- Alles, was Spass macht

Tietze, Schenk: "Halbleiterschaltungstechnik", Springer

Lehrveranstaltung: Werkstoffe der Elektrotechnik (Vorlesung)

Dozenten:

Prof. Manfred Eich

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Atomaufbau und Periodensystem Größen von Atomen und Ionen
- · Atombindung und Kristallstruktur
- Mischkristalle und Phasenmischungen:

Diffusion, Zustandsdiagramme, Ausscheidung und Korngrenzen

• Werkstoffeigenschaften

Mechanische, thermische, elektrische, dielektrische Eigenschaften

- Metalle
- Halbleiter
- Keramiken und Gläser
- Polymere
- Magnetische Werkstoffe
- Elektrochemie:

Oxidationszahlen, Elektrolyse, Energiezellen, Brennstoffzellen

Literatur

H. Schaumburg: Einführung in die Werkstoffe der Elektrotechnik, Teubner (1993)

Lehrveranstaltung: Werkstoffe der Elektrotechnik (Übung) (Übung)

Dozenten:

Prof. Manfred Eich

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Atomaufbau und Periodensystem Größen von Atomen und Ionen
- · Atombindung und Kristallstruktur
- Mischkristalle und Phasenmischungen:

Diffusion, Zustandsdiagramme, Ausscheidung und Korngrenzen

- Werkstoffeigenschaften
 - Mechanische, thermische, elektrische, dielektrische Eigenschaften
- Metalle
- Halbleiter
- Keramiken und Gläser
- Polymere
- Magnetische Werkstoffe
- Elektrochemie:

 $Oxidations zahlen, \, Elektrolyse, \, Energiezellen, \, Brennstoff zellen$

Literatur:

H. Schaumburg: Einführung in die Werkstoffe der Elektrotechnik, Teubner (1993)

<u>Titel</u>	<u>Typ</u>	<u>SWS</u>
Analysis II	Vorlesung	2
Analysis II	Hörsaalübung	1
Analysis II	Gruppenübung	1
Lineare Algebra II	Vorlesung	2
Lineare Algebra II	Gruppenübung	1
Lineare Algebra II	Hörsaalübung	1

Modulverantwortlich:

Prof. Anusch Taraz

Zulassungsvoraussetzung:

Keine

Empfohlene Vorkenntnisse:

Mathematik I

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

- Studierende können weitere Begriffe der Analysis und Linearen Algebra benennen und anhand von Beispielen erklären.
- Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern.
- Sie kennen Beweisstrategien und können diese wiedergeben.

Fertigkeiten:

- Studierende k\u00f6nnen Aufgabenstellungen aus der Analysis und Linearen Algebra mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden l\u00f6sen.
- Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu
 erschließen und können diese verifizieren.
- Studierende k\u00f6nnen zu gegebenen Problemstellungen einen geeigneten L\u00f6sungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten.

Personale Kompetenzen:

Sozialkompetenz:

- Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache.
- Sie k\u00f6nnen dabei insbesondere neue Konzepte adressatengerecht kommunizieren und anhand von Beispielen das Verst\u00e4ndnis der Mitstudierenden \u00fcberpr\u00fcfen und vertiefen.

Selbstständigkeit:

- Studierende k\u00f6nnen eigenst\u00e4ndig ihr Verst\u00e4ndnis mathematischer Konzepte \u00fcberpr\u00fcfen, noch offene Fragen formulieren und sich gegebenenfalls gezielt Hilfe holen.
- Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume an schwierigen Problemstellungen zu arbeiten.

Leistungspunkte:

8 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 128, Präsenzstudium: 112

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht

Bioverfahrenstechnik: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Elektrotechnik myTrack: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Logistik und Mobilität: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht

Lehrveranstaltung: Analysis II (Vorlesung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Potenzreihen und elementare Funktionen
- Interpolation
- Integration (bestimmte Integrale, Hauptsatz, Integrationsregeln, uneigentliche Integrale, parameterabhängige Integrale)
- Anwendungen der Integralrechnung (Volumen und Mantelfläche von Rotationskörpern, Kurven und Bogenlänge, Kurvenintegrale
- numerische Quadratur
- periodische Funktionen und Fourier-Reihen

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 1; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Analysis II (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Potenzreihen und elementare Funktionen
- Interpolation
- Integration (bestimmte Integrale, Hauptsatz, Integrationsregeln, uneigentliche Integrale, parameterabhängige Integrale)
- Anwendungen der Integralrechnung (Volumen und Mantelfläche von Rotationskörpern, Kurven und Bogenlänge, Kurvenintegrale
- numerische Quadratur
- periodische Funktionen und Fourier-Reihen

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 1; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Analysis II (Übung)

Dozenten

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Potenzreihen und elementare Funktionen
- Interpolation
- Integration (bestimmte Integrale, Hauptsatz, Integrationsregeln, uneigentliche Integrale, parameterabhängige Integrale)
- Anwendungen der Integralrechnung (Volumen und Mantelfläche von Rotationskörpern, Kurven und Bogenlänge, Kurvenintegrale
- numerische Quadratur
- periodische Funktionen und Fourier-Reihen

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 1; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Lineare Algebra II (Vorlesung)

Dozenten:

Prof. Anusch Taraz

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Lineare Abbildungen: Basiswechsel, orthogonale Projektion, orthogonale Matrizen, Householder Matrizen
- Lineare Ausgleichsprobleme: QR-Zerlegung, Normalgleichungen, lineare diskrete Approximation
- Eigenwertaufgaben: Diagonalisierbarkeit von Matrizen, normale Matrizen, symmetrische und hermitische Matrizen, Jordansche Normalform, Singulärwertzerlegung

• Systeme linearer Differentialgleichungen

Literatur:

- W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
- W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf

Lehrveranstaltung: Lineare Algebra II (Übung)

Dozenten:

Prof. Anusch Taraz

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Lineare Abbildungen: Basiswechsel, orthogonale Projektion, orthogonale Matrizen, Householder Matrizen
- Lineare Ausgleichsprobleme: QR-Zerlegung, Normalgleichungen, lineare diskrete Approximation
- Eigenwertaufgaben: Diagonalisierbarkeit von Matrizen, normale Matrizen, symmetrische und hermitische Matrizen, Jordansche Normalform, Singulärwertzerlegung
- Systeme linearer Differentialgleichungen

Literatur:

- W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
- W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

Lehrveranstaltung: Lineare Algebra II (Übung)

Dozenten:

Prof. Anusch Taraz

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Lineare Abbildungen: Basiswechsel, orthogonale Projektion, orthogonale Matrizen, Householder Matrizen
- Lineare Ausgleichsprobleme: QR-Zerlegung, Normalgleichungen, lineare diskrete Approximation
- Eigenwertaufgaben: Diagonalisierbarkeit von Matrizen, normale Matrizen, symmetrische und hermitische Matrizen, Jordansche Normalform, Singulärwertzerlegung
- Systeme linearer Differentialgleichungen

- W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
- W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

Modul: Elektrotechnik III: Netzwerktheorie und Transienten

Lehrveranstaltungen:

TitelTypSWSNetzwerktheorieVorlesung3NetzwerktheorieGruppenübung2

Modulverantwortlich:

Prof. Arne Jacob

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Elektrotechnik I und II, Mathematik I und II

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können die grundlegenden Berechnungsverfahren von elektrischen Netzwerken erklären. Sie kennen die Analyse linearer, mit periodischen Signalen angeregter Netzwerke, mittels Fourier-Reihenentwicklung. Sie kennen die Berechnungsmethoden von Einschaltvorgängen in linearen Netzwerken sowohl im Zeit- als auch im Frequenzbereich. Sie können das Frequenzverhalten und die Synthese einfacher passiver Zweipol-Netzwerke erläutern.

Fertigkeiten:

Die Studierenden können Spannungen und Ströme in elektrischen Netzwerken, auch bei periodischer Anregung, mit Hilfe von grundlegenden Berechnungsverfahren bestimmen. Sie können sowohl im Zeit- als auch im Frequenzbereich Einschaltvorgänge in elektrischen Netzwerken berechnen und deren Einschaltverhalten beschreiben. Sie können das Frequenzverhalten passiver Zweipol-Netzwerke analysieren und synthetisieren.

Personale Kompetenzen:

Sozialkompetenz:

Die Studierenden können in kleinen Übungsgruppen vorlesungsrelevante Aufgaben gemeinsam bearbeiten und die selbst erarbeiteten Lösungen innerhalb der Übungsgruppe präsentieren.

Selbstständigkeit:

Die Studierenden sind in der Lage, die notwendigen Berechnungsverfahren für die zu lösenden Probleme zu erkennen und anzuwenden. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Kurzfragentests, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht

General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht

Mechatronik: Kernqualifikation: Pflicht

Technomathematik: Vertiefung Ingenieurwissenschaften: Wahlpflicht

Lehrveranstaltung: Netzwerktheorie (Vorlesung)

Dozenten:

Prof. Arne Jacob

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- Systematische Berechnung linearer, elektrischer Netzwerke
- Berechnung von N-Tor-Netzwerken
- Periodische Anregung von linearen Netzwerken
- Einschaltvorgänge im Zeitbereich
- Einschaltvorgänge im Frequenzbereich; Laplace-Transformation
- Frequenzverhalten passiver Zweipol-Netzwerke

- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011)
- M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011)

- L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011)
- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)
 A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)
 R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006)

- L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005)

Lehrveranstaltung: Netzwerktheorie (Übung)

Dozenten:

Prof. Arne Jacob

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Tite Typ SWS Technische Informatik Vorlesung 3 Technische Informatik Gruppenübung

Modulverantwortlich:

NN

Zulassungsvoraussetzung:

Keine

Empfohlene Vorkenntnisse:

Grundkenntnisse der Elektrotechnik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Grundlegende Kenntnisse auf dem Gebiet des Entwurfs digitaler Schaltungen.

Fertiakeiten:

Die Studierenden können selbstständig digitale Schaltungen analysieren und erstellen.

Sie können geeignete Analyse- und Synthesemethoden auswählen.

Personale Kompetenzen:

Sozialkompetenz:

Selbstständigkeit:

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Zuordnung zu folgenden Curricula:

Eigenstudium: 124, Präsenzstudium: 56

Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht

Mechatronik: Kernqualifikation: Pflicht

Technomathematik: Vertiefung Informatik: Wahlpflicht

Lehrveranstaltung: Technische Informatik (Vorlesung)

Dozenten:

NN

Sprachen:

DE

Zeitraum:

WS

Inhalt: 1. Einführung

· Grundlagen der Digitaltechnik

- Analog versus Digital
- Gatter und Flipflops
- Aspekte der Digitaltechnik
- Integrierte Schaltkreise
- Digitale Systeme
- Time-to-Market

2. Zahlensysteme und Codierung

- Zahlensysteme
- Rechnerinterne Zahlenformate
- Arithmetische Operationen im Dualsystem
- Zahlen- und Zeichencodes
- Fehlererkennende und -korrigierende Codes
- Codes zur seriellen Datenübertragung
- Binäre Vorsätze für Zweierpotenzen

3. Digitale Schaltungstechnik

- · Logische Signale und Gatter
- Logikfamilien
- CMOS-Logik
- CMOS-Schaltungstechnik: Elektrisches Verhalten
- CMOS-Schaltungen für Ein- und Ausgänge
- Bipolare Logik und TTL-Schaltungstechnik
- CMOS-Logikfamilien
- CMOS/TTL-Schnittstelle

4. Schaltnetze (Grundlagen)

- · Boolesche Algebra
- Analyse kombinatorischer Schaltungen
- Synthese kombinatorischer Schaltungen
- Minimierungsverfahren
- Störimpulse bei digitalen Schaltungen

5. Schaltnetze (Anwendungen)

- Standards zur Dokumentation
- · Zeitverhalten digitaler Schaltungen
- Decodierer und Codierer
- Tri-State-Logikgatter und Busse
- Multiplexer und Demultiplexer
- Präfix-Logik und Paritätsschaltungen
- Komparatoren
- Addierer und Subtrahierer
- Multiplizierer
- Barrel Shifter
- Arithmetisch-Logische Einheit (ALU)

6. Schaltwerke (Grundlagen)

- Zustandsbegriff und Taktsignal
- Bistabile Speicherelemente
- Asynchrone Speicherelemente
- Synchrone taktzustandsgesteuerte Speicherelemente
- Synchrone taktflankengesteuerte Speicherelemente
- Übersicht: Latches und Flipflops
- Analyse von Schaltwerken
- Klassisches Design von Schaltwerken
- Design von Schaltwerken mit Zustandsübergangsgraphen
- Design von Schaltwerken mit VHDL
- Hierarchische Schaltwerkstrukturen

7. Schaltwerke (Anwendungen)

- Standards zur Dokumentation
- Latches und Flipflops
- Zähler
- Schieberegister
- Iterative Schaltnetze versus Schaltwerke
- Design-Methodik f
 ür synchrone Systeme
- Problematik bei synchronen Designs

8. Speicher, PLDs, CPLDs und FPGAs

- ROM, SRAM, DRAM, SDRAM
- Programmable Logic Devices (PLDs)
- Complex Programmable Logic Devices (CPLDs)
- Field-Programmable Gate Arrays (FPGAs)

9. Mikroprozessortechnik (Grundlagen)

- Historisches
- Von-Neumann-Architektur
- Komponenten eines Mikroprozessorsystems

Literatur:

- S. Voigt, Skript zur Vorlesung "Technische Informatik"
- J. Wakerly, Digital Design: Principles and Practices, 4. Auflage, 2010, Pearson Prentice Hall, ISBN: 978-0-13-613987-4
- D. Hoffmann, Grundlagen der Technischen Informatik, 2. Auflage, 2010, Carl Hanser Verlag, ISBN: 978-3-446-42150-9

Lehrveranstaltung: Technische Informatik (Übung)

Dozenten:

Sprachen:

DE

Zeitraum:

WS

Inhalt:

1. Einführung

- Grundlagen der Digitaltechnik
- Analog versus Digital
- Gatter und Flipflops
- · Aspekte der Digitaltechnik
- Integrierte Schaltkreise
- Digitale Systeme
- Time-to-Market

2. Zahlensysteme und Codierung

- Zahlensysteme
- Rechnerinterne Zahlenformate
- Arithmetische Operationen im Dualsystem
- Zahlen- und Zeichencodes
- Fehlererkennende und -korrigierende Codes
- Codes zur seriellen Datenübertragung
- Binäre Vorsätze für Zweierpotenzen

3. Digitale Schaltungstechnik

- Logische Signale und Gatter
- Logikfamilien
- CMOS-Logik
- CMOS-Schaltungstechnik: Elektrisches Verhalten
- CMOS-Schaltungen für Ein- und Ausgänge
- Bipolare Logik und TTL-Schaltungstechnik
- CMOS-Logikfamilien
- CMOS/TTL-Schnittstelle

4. Schaltnetze (Grundlagen)

- Boolesche Algebra
- Analyse kombinatorischer Schaltungen
- Synthese kombinatorischer Schaltungen
- Minimierungsverfahren
- Störimpulse bei digitalen Schaltungen

5. Schaltnetze (Anwendungen)

- Standards zur Dokumentation
- Zeitverhalten digitaler Schaltungen
- Decodierer und Codierer
- Tri-State-Logikgatter und Busse
- Multiplexer und Demultiplexer
- Präfix-Logik und Paritätsschaltungen
- Komparatoren
- Addierer und Subtrahierer
- Multiplizierer
- Barrel Shifter
- Arithmetisch-Logische Einheit (ALU)

6. Schaltwerke (Grundlagen)

- Zustandsbegriff und Taktsignal
- Bistabile Speicherelemente
- Asynchrone Speicherelemente
- Synchrone taktzustandsgesteuerte Speicherelemente
- Synchrone taktflankengesteuerte Speicherelemente
- Übersicht: Latches und Flipflops
- Analyse von Schaltwerken
- Klassisches Design von Schaltwerken
- Design von Schaltwerken mit Zustandsübergangsgraphen
- Design von Schaltwerken mit VHDL
- Hierarchische Schaltwerkstrukturen

7. Schaltwerke (Anwendungen)

- Standards zur Dokumentation
- Latches und Flipflops

 771-1-7
- Zähler

- Schieberegister
- Iterative Schaltnetze versus Schaltwerke
- Design-Methodik für synchrone Systeme
- Problematik bei synchronen Designs

8. Speicher, PLDs, CPLDs und FPGAs

- ROM, SRAM, DRAM, SDRAM
- Programmable Logic Devices (PLDs)
- Complex Programmable Logic Devices (CPLDs)
- Field-Programmable Gate Arrays (FPGAs)

9. Mikroprozessortechnik (Grundlagen)

- Historisches
- Von-Neumann-Architektur
- Komponenten eines Mikroprozessorsystems

- S. Voigt, Skript zur Vorlesung "Technische Informatik"
- J. Wakerly, Digital Design: Principles and Practices, 4. Auflage, 2010, Pearson Prentice Hall, ISBN: 978-0-13-613987-4
- D. Hoffmann, Grundlagen der Technischen Informatik, 2. Auflage, 2010, Carl Hanser Verlag, ISBN: 978-3-446-42150-9

<u>Titel</u>	Тур	SWS
Elektrotechnisches Versuchspraktikum	Laborpraktikum	2
Messtechnik und Messdatenverarbeitung	Vorlesung	2
Messtechnik und Messdatenverarbeitung	Gruppenübung	1

Modulverantwortlich:

Prof. Alexander Schlaefer

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Grundlagen Mathematik

Grundlagen Elektrotechnik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können die Aufgaben von Messsystemen sowie das Vorgehen bei der Messdatenerfassungen und -verarbeitungen erklären. Die für die Messtechnik relevanten Aspekte der Wahrscheinlichkeitstheorie und der Messfehlerbehandlung sowie das Vorgehen bei der Messungen stochastischer Signale können wiedergegeben werden. Methoden zur Beschreibungen gemessener Signale und zur Digitalisierungen von Signalen sind den Studierenden bekannt und können erläutert werden.

Fertigkeiten:

Die Studierenden sind in der Lage messtechnische Fragestellungen zu erklären und Methoden zur Beschreibung und Verarbeitung von Messdaten anzuwenden.

Personale Kompetenzen:

Sozialkompetenz:

Selbstständigkeit:

Die Studierenden können ihren Wissensstand einschätzen und die von Ihnen erzielten Ergebnisse kritisch bewerten.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht

Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht

Technomathematik: Kernqualifikation: Wahlpflicht

Lehrveranstaltung: Elektrotechnisches Versuchspraktikum (Laborpraktikum)

Dozenten

Prof. Alexander Schlaefer, Prof. Christian Schuster, Prof. Günter Ackermann, Prof. Rolf-Rainer Grigat, Prof. Arne Jacob, Prof. Georg Friedrich Mayer-Lindenberg, Prof. Herbert Werner, Dozenten des SD E

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Praktikumsversuche

"Digitale Schaltungen" Prof. Grigat

"Halbleiter-Bauelemente" Prof. Jacob

"Mikrocontroller" Prof. Mayer-Lindenb.

"Analoge Schaltungen" Prof. Werner
"Leistung im Wechselstromkreis" Prof. Schuster

"Elektrische Maschinen" Prof. Ackermann

Literatur:

Wird in der Lehrveranstaltung festgelegt

Lehrveranstaltung: Messtechnik und Messdatenverarbeitung (Vorlesung)

Dozenten:

Prof. Alexander Schlaefer

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Einführung, Messsysteme und Messfehler, Wahrscheinlichkeitstheorie, Messung stochastischer Signale, Beschreibung gemessener Signale

Erfassung analoger Signale, Praktische Messdatenerfassung

Literatur:

Puente León, Kiencke: Messtechnik, Springer 2012 Lerch: Elektrische Messtechnik, Springer 2012

Reisig: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien; Vieweg+Teubner 2010

Weitere Literatur wird in der Veranstaltung bekanntgegeben.

Lehrveranstaltung: Messtechnik und Messdatenverarbeitung (Übung)

Dozenten:

Prof. Alexander Schlaefer

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Einführung, Messsysteme und Messfehler, Wahrscheinlichkeitstheorie, Messung stochastischer Signale, Beschreibung gemessener Signale

Erfassung analoger Signale, Praktische Messdatenerfassung

Literatur:

Puente León, Kiencke: Messtechnik, Springer 2012 Lerch: Elektrische Messtechnik, Springer 2012

Reisig: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien; Vieweg+Teubner 2010

Weitere Literatur wird in der Veranstaltung bekanntgegeben.

<u>Titel</u>	Тур	SWS
Analysis III	Vorlesung	2
Analysis III	Gruppenübung	1
Analysis III	Hörsaalübung	1
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen)	Vorlesung	2
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen)	Gruppenübung	1
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen)	Hörsaalübung	1

Modulverantwortlich:

Prof. Anusch Taraz

Zulassungsvoraussetzung:

Keine

Empfohlene Vorkenntnisse:

Mathematik I + II

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

- Studierende können die grundlegenden Begriffe aus dem Gebiet der Analysis und Differentialgleichungen benennen und anhand von Beispielen erklären.
- Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern.
- Sie kennen Beweisstrategien und können diese wiedergeben.

Fertigkeiten:

- Studierende können Aufgabenstellungen aus dem Gebiet der Analysis und Differentialgleichungen mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden lösen.
- Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren.
- Studierende können zu gegebenen Problemstellungen einen geeigneten Lösungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten.

Personale Kompetenzen:

Sozialkompetenz:

- Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache.
- Sie können dabei insbesondere neue Konzepte adressatengerecht kommunizieren und anhand von Beispielen das Verständnis der Mitstudierenden überprüfen und vertiefen.

Selbstständigkeit:

- Studierende können eigenständig ihr Verständnis komplexer Konzepte überprüfen, noch offene Fragen auf den Punkt bringen und sich gegebenenfalls gezielt Hilfe holen.
- Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume zielgerichtet an schwierigen Problemstellungen zu arbeiten.

Leistungspunkte:

8 LP

Studienleistung: Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 128, Präsenzstudium: 112

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht

Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht

Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht

Lehrveranstaltung: Analysis III (Vorlesung)

Verfahrenstechnik: Kernqualifikation: Pflicht

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Grundzüge der Differential- und Integralrechnung mehrerer Variablen:

- Differentialrechnung mehrerer Veränderlichen
- Mittelwertsätze und Taylorscher Satz
- Extremwertbestimmung
- Implizit definierte Funktionen
- Extremwertbestimmung bei Gleichungsnebenbedinungen
- Newton-Verfahren für mehrere Variablen
- Bereichsintegrale
- Kurven- und Flächenintegrale
- · Integralsätze von Gauß und Stokes

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Analysis III (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Grundzüge der Differential- und Integralrechnung mehrerer Variablen:

- Differentialrechnung mehrerer Veränderlichen
- Mittelwertsätze und Taylorscher Satz
- Extremwertbestimmung
- · Implizit definierte Funktionen
- Extremwertbestimmung bei Gleichungsnebenbedinungen
- Newton-Verfahren für mehrere Variablen
- Bereichsintegrale
- Kurven- und Flächenintegrale
- Integralsätze von Gauß und Stokes

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Analysis III (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Grundzüge der Differential- und Integralrechnung mehrerer Variablen:

- Differentialrechnung mehrerer Veränderlichen
- Mittelwertsätze und Taylorscher Satz
- Extremwertbestimmung
- Implizit definierte Funktionen
- Extremwertbestimmung bei Gleichungsnebenbedinungen
- Newton-Verfahren für mehrere Variablen
- Bereichsintegrale
- Kurven- und Flächenintegrale
- Integralsätze von Gauß und Stokes

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (Vorlesung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen

- Einführung und elementare Methoden
- Existenz und Eindeutigkeit bei Anfangswertaufgaben
- Lineare Differentialgleichungen
- Stabilität und qualitatives Lösungsverhalten
- Randwertaufgaben und Grundbegriffe der Variationsrechnung
- Eigenwertaufgaben
- Numerische Verfahren zur Integration von Anfangs- und Randwertaufgaben
- Grundtypen bei partiellen Differentialgleichungen

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DF

Zeitraum:

WS

Inhalt:

Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen

- Einführung und elementare Methoden
- Existenz und Eindeutigkeit bei Anfangswertaufgaben
- Lineare Differentialgleichungen
- Stabilität und qualitatives Lösungsverhalten
- Randwertaufgaben und Grundbegriffe der Variationsrechnung
- Eigenwertaufgaben
- · Numerische Verfahren zur Integration von Anfangs- und Randwertaufgaben
- Grundtypen bei partiellen Differentialgleichungen

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Lehrveranstaltung: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

WS

Inhalt

Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen

- Einführung und elementare Methoden
- Existenz und Eindeutigkeit bei Anfangswertaufgaben
- Lineare Differentialgleichungen
- Stabilität und qualitatives Lösungsverhalten
- Randwertaufgaben und Grundbegriffe der Variationsrechnung
- Eigenwertaufgaben
- Numerische Verfahren zur Integration von Anfangs- und Randwertaufgaben
- Grundtypen bei partiellen Differentialgleichungen

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- H.J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

TitelTypSWSTheoretische Elektrotechnik I: Zeitunabhängige FelderVorlesung3Theoretische Elektrotechnik I: Zeitunabhängige FelderGruppenübung2

Modulverantwortlich:

Prof. Christian Schuster

Zulassungsvoraussetzung:

Elektrotechnik I, Elektrotechnik II, Mathematik I, Mathematik III, Mathematik III

Empfohlene Vorkenntnisse:

Grundlagen der Elektrotechnik und der höheren Mathematik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können die grundlegenden Formeln, Zusammenhänge und Methoden der Theorie zeitunabhängiger elektromagnetischer Felder erklären. Sie können das prinzipielle Verhalten von elektrostatischen, magnetostatischen und elektrischen Strömungsfeldern in Abhängigkeit von ihren Quellen erläutern. Sie können die Eiegenschaften komplexer elektromagnetischer Felder mit Hilfe des Superpositionsprinzips auf Basis einfacher Feldlösungen beschreiben. Sie können einen Überblick über die Anwendungen zeitunabhängiger elektromagnetischer Felder in der elektrotechnischen Praxis geben.

Fertigkeiten:

Die Studierenden können die integrale Form der Maxwellgleichung zur Lösung hochsymmetrischer Probleme zeitunabhängiger elektromagnetischer Feldprobleme anwenden. Ebenso können sie eine Reihe von Verfahren zur Lösung der differentiellen Form der Maxwellgleichung für allgemeinere Feldprobleme anwenden. Sie können einschätzen, welche prinzipiellen Effekte gewisse zeitunabhängige Feldquellen erzeugen und können diese quantitativ analysieren. Sie können abgeleitete Größen zur Charakterisierung elektrostatischer, magnetostatischer und elektrischer Strömungsfelder (Kapazitäten, Induktivitäten, Widerstände usw.) aus den Feldern ableiten und für die Anwendung in der elektrotechnischen Praxis dimensionieren.

Personale Kompetenzen:

Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Kleingruppenübungen).

Selbstständigkeit:

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht

Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwesen: Wahlpflicht Technomathematik: Vertiefung Ingenieurwissenschaften: Wahlpflicht

Lehrveranstaltung: Theoretische Elektrotechnik I: Zeitunabhängige Felder (Vorlesung)

Dozenten:

Prof. Christian Schuster

Sprachen:

DE

Zeitraum:

SS

Inhalt

- Maxwellsche Gleichungen in integraler und differentieller Form
- Rand- und Sprungbedingungen
- Energieerhaltungssatz und Ladungserhaltungssatz
- Klassifikation elektromagnetischen Feldverhaltens
- Integrale Größen zeitunabhängiger Felder (R,L,C)
- Allgemeine Lösungsverfahren für die Poissongleichung
- Elektrostatische Felder und ihre speziellen Lösungsmethoden

- Magnetostatische Felder und ihre speziellen Lösungsmethoden
- Elektrische Strömungsfelder und ihre speziellen Lösungsmethoden
- Kraftwirkung in zeitunabhängigen Feldern
- Numerische Methoden zur Lösung zeitunabhängiger Probleme

Literatur:

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)
- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)
- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)
- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)
- J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)
- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)

Lehrveranstaltung: Theoretische Elektrotechnik I: Zeitunabhängige Felder (Übung)

Dozenten:

Prof. Christian Schuster

Sprachen:

Zeitraum:

SS

Inhalt:

- Maxwellsche Gleichungen in integraler und differentieller Form
- Rand- und Sprungbedingungen
- Energieerhaltungssatz und Ladungserhaltungssatz
- Klassifikation elektromagnetischen Feldverhaltens
- Integrale Größen zeitunabhängiger Felder (R,L,C)
- Allgemeine Lösungsverfahren für die Poissongleichung
- Elektrostatische Felder und ihre speziellen Lösungsmethoden
- Magnetostatische Felder und ihre speziellen Lösungsmethoden
- Elektrische Strömungsfelder und ihre speziellen Lösungsmethoden
- Kraftwirkung in zeitunabhängigen Feldern
- Numerische Methoden zur Lösung zeitunabhängiger Probleme

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)
- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)
- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)
- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)
- J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)
- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)

Tite Typ SWS Signale und Systeme Vorlesuna 3 Hörsaalübung Signale und Systeme

Modulverantwortlich:

Prof. Gerhard Bauch

Zulassungsvoraussetzung:

Mathematik 1-3

Empfohlene Vorkenntnisse:

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können Signale und lineare zeitinvariante (LTI) Systeme im Sinne der Signal- und Systemtheorie klassifizieren und beschreiben. Sie beherrschen die grundlegenden Integraltransformationen zeitkontinuierlicher und zeitdiskreter deterministischer Signale und Systeme. Sie können deterministische Signale und Systeme in Zeit- und Bildbereich mathematisch beschreiben und analysieren. Sie verstehen elementare Operationen und Konzepte der Signalverarbeitung und können diese in Zeit- und Bildbereich beschreiben. Insbesondere verstehen Sie die mit dem Übergang vom zeitkontinuierlichen zum zeitdiskreten Signal bzw. System einhergehenden Effekte in Zeit- und Bildbereich.

Fertigkeiten:

Die Studierenden können deterministische Signale und lineare zeitinvariante Systeme mit den Methoden der Signal- und Systemtheorie beschreiben und analysieren. Sie können einfache Systeme hinsichtlich wichtiger Eigenschaften wie Betrags- und Phasenfreguenzgang. Stabilität, Linearität etc. analysieren und entwerfen. Sie können den Einfluß von LTI-Systemen auf die Signaleigenschaften in Zeit- und Frequenzbereich beurteilen

Personale Kompetenzen:

Sozialkompetenz:

Die Studierenden können fachspezifische Aufgaben gemeinsam bearbeiten.

Selbstständigkeit:

Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern.

Leistungspunkte:

6 LP

Studienleistung: Klausu

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bioverfahrenstechnik: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht

Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht

General Engineering Science: Vertiefung Bioverfahrenstechnik: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht

General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht

General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht

Informatik-Ingenieurwesen: Kernqualifikation: Pflicht

Mechatronik: Kernqualifikation: Pflicht

Technomathematik: Vertiefung Ingenieurwissenschaften: Wahlpflicht

Lehrveranstaltung: Signale und Systeme (Vorlesung)

Dozenten:

Prof. Gerhard Bauch

Sprachen:

DE/EN

Zeitraum:

SS

Inhalt:

- · Elementare Klassifizierung und Beschreibung zeitkontinuierlicher und zeitdiskreter deterministischer Signale und Systemen
- Faltung

- · Leistung und Energie von Signalen
- Korrelationsfunktionen deterministischer Signale
- Lineare zeitinvariante (LTI) Systeme
- Signaltransformationen:
 - o Fourier-Reihe
 - Fourier Transformation
 - Laplace Transformation
 - Zeitdiskrete Fouriertranformation
 - o Diskrete Fouriertransformation (DFT), Fast Fourier Transform (FFT)
 - Z-Transformation
- Analyse und Entwurf von LTI-Systemen in Zeit- und Frequenzbereich
- Grundlegende Filtertypen
- · Abtastung, Abtasttheorem
- Grundlagen rekursiver und nicht-rekursiver zeitdiskreter Filter

Literatur:

- T. Frey, M. Bossert, Signal- und Systemtheorie, B.G. Teubner Verlag 2004
- K. Kammeyer, K. Kroschel, Digitale Signalverarbeitung, Teubner Verlag.
- B. Girod ,R. Rabensteiner , A. Stenger , Einführung in die Systemtheorie, B.G. Teubner, Stuttgart, 1997
- J.R. Ohm, H.D. Lüke , Signalübertragung, Springer-Verlag 8. Auflage, 2002
- S. Haykin, B. van Veen: Signals and systems. Wiley.
- Oppenheim, A.S. Willsky: Signals and Systems. Pearson.
- Oppenheim, R. W. Schafer: Discrete-time signal processing. Pearson.

Lehrveranstaltung: Signale und Systeme (Übung)

Dozenten:

Prof. Gerhard Bauch

Sprachen:

DE/EN

Zeitraum:

SS

Inhalt:

- Elementare Klassifizierung und Beschreibung zeitkontinuierlicher und zeitdiskreter deterministischer Signale und Systemen
- Faltung
- Leistung und Energie von Signalen
- · Korrelationsfunktionen deterministischer Signale
- Lineare zeitinvariante (LTI) Systeme
- Signaltransformationen:
 - o Fourier-Reihe
 - Fourier Transformation
 - Laplace Transformation
 - $\circ \ \ Zeit disk rete \ Fourier tranformation$
 - o Diskrete Fouriertransformation (DFT), Fast Fourier Transform (FFT)
 - Z-Transformation
- Analyse und Entwurf von LTI-Systemen in Zeit- und Frequenzbereich
- Grundlegende Filtertypen
- Abtastung, Abtasttheorem
- Grundlagen rekursiver und nicht-rekursiver zeitdiskreter Filter

- T. Frey , M. Bossert , Signal- und Systemtheorie, B.G. Teubner Verlag 2004
- K. Kammeyer, K. Kroschel, Digitale Signalverarbeitung, Teubner Verlag.
- B. Girod ,R. Rabensteiner , A. Stenger , Einführung in die Systemtheorie, B.G. Teubner, Stuttgart, 1997
- J.R. Ohm, H.D. Lüke , Signalübertragung, Springer-Verlag 8. Auflage, 2002
- S. Haykin, B. van Veen: Signals and systems. Wiley.
- · Oppenheim, A.S. Willsky: Signals and Systems. Pearson.
- Oppenheim, R. W. Schafer: Discrete-time signal processing. Pearson.

TitelTypSWSForschungsseminar Elektrotechnik, Informatik, MathematikSeminar2LeitungstheorieVorlesung2LeitungstheorieHörsaalübung2

Modulverantwortlich:

Prof. Arne Jacob

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Elektrotechnik I-III, Mathematik I-III

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können die grundlegenden Zusammenhänge der Wellenausbreitung auf den Leitungen der Niederfrequenz- und Hochfrequenztechnik erklären. Sie können das Verhalten von Schaltungen mit Leitungen im Zeit- und Frequenzbereich analysieren. Sie können einfache Ersatzschaltungen für Leitungen erklären. Sie können Schaltungen mit Mehrfachleitersystemen untersuchen. Sie können die Inhalte von einem selbst gewählten Forschungsthema präsentieren und diskutieren.

Fertiakeiten

Die Studierenden können Ausbreitungsvorgänge in einfachen Netzwerken mit Leitungen untersuchen und quantitativ berechnen. Sie können Netzwerke im Frequenzbereich untersuchen und mittels des Leitungsdiagramms untersuchen. Sie können Ersatzschaltungen von Leitungen analysieren. Sie können Mehrfachleitersysteme mit vektoriellen Leitungsgleichungen analysieren. Sie können einen Fachvortrag halten

Personale Kompetenzen:

Sozialkompetenza

Die Studierenden können in kleinen Gruppen Aufgaben gemeinsam bearbeiten und ihre Ergebnisse diskutieren. Sie können die gelehrte Theorie in vorlesungsbegleitenden Experimenten überprüfen und in kleinen Gruppen diskutieren. Sie können ein Forschungsthema einem Fachpublikum präsentieren und in einer Diskussion bewerten.

Selbstständigkeit:

Die Studierenden sind in der Lage, eigenständig Aufgaben zu lösen und sich Fähigkeiten aus der Vorlesung und der Literatur zu erarbeiten. Sie sind in der Lage, Wissen durch Computeranimationen zu überprüfen und zu vertiefen. Sie können ihren Wissensstand mit Kurzfragen während der Vorlesung und begleitende Tests überprüfen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I-III und Mathematik I-III) verknüpfen. Sie können sich eigenständig in ein Forschungsthema einarbeiten und eine Präsentation ausarbeiten.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 96, Präsenzstudium: 84

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht

 ${\bf Elektrotechnik\ myTrack: Kernqualifikation: Pflicht}$

General Engineering Science: Vertiefung Elektrotechnik: Pflicht

Technomathematik: Kernqualifikation: Wahlpflicht

Lehrveranstaltung: Forschungsseminar Elektrotechnik, Informatik, Mathematik (Seminar)

Dozenten:

Dozenten des SD E

Sprachen:

DE/EN

Zeitraum:

SS

Inhalt

Seminarvortrag zu vorgegebenem Thema

Literatur:

Themenabhängig / subject related

Lehrveranstaltung: Leitungstheorie (Vorlesung)

Dozenten:

Prof. Arne Jacob

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Wellenausbreitung am Modell elektrischer Leitungen
- Ausgleichsvorgänge und Impulse auf Leitungen
- Leitungen im eingeschwungenen Zustand
- Widerstandstransformation und Leitungsdiagramm
- Ersatzschaltungen und Kettenleiter
- Mehrfachleitungen und symmetrische Komponenten

Literatur

- Unger, H.-G., "Elektromagnetische Wellen auf Leitungen", Hüthig Verlag (1991)

Lehrveranstaltung: Leitungstheorie (Übung)

Dozenten:

Prof. Arne Jacob

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Wellenausbreitung am Modell elektrischer Leitungen
- Ausgleichsvorgänge und Impulse auf Leitungen
- Leitungen im eingeschwungenen Zustand
- Widerstandstransformation und Leitungsdiagramm
- Ersatzschaltungen und Kettenleiter
- Mehrfachleitungen und symmetrische Komponenten

Literatur:

- Unger, H.-G., "Elektromagnetische Wellen auf Leitungen", Hüthig Verlag (1991)

 Titel
 Typ
 SWS

 Elektrotechnisches Projektpraktikum
 Laborpraktikum
 5

Modulverantwortlich:

Prof. Christian Schuster

Zulassungsvoraussetzung:

Elektrotechnik I, Elektrotechnik II

Empfohlene Vorkenntnisse:

Grundlagen der Elektrotechnik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz

Wissen:

Die Studierenden können einen Überblick über die fachlichen Details von elektrotechnischen Projekten geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren.

Fertiakeiten:

Die Studierenden können ihr Grundlagenwissen aus der Elektrotechnik in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung elektrotechnischer Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen.

Personale Kompetenzen:

Sozialkompetenz:

Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für elektrotechnische Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer elektrotechnischen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren.

Selbstständigkeit:

Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen elektrotechnische Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen.

Leistungspunkte:

6 LP

Studienleistung:

Projektarbeit

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht

Technomathematik: Kernqualifikation: Wahlpflicht

Lehrveranstaltung: Elektrotechnisches Projektpraktikum (Laborpraktikum)

Dozenten:

Prof. Christian Schuster, Dozenten des SD E

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Es werden Projekte aus dem ganzen Anwendungsbereich der Elektrotechnik bearbeitet. Dabei werden typischerweise Prototypen von Funktionseinheiten oder ganzen Systemen gebaut. Beispiele sind: Radargeräte, Sensornetzwerke, Amateurfunkgeräte, diskrete Rechner, Kraftmikroskope. Die Projekte werden jedes Jahr neu konzipiert.

Literatur:

Alle zur Durchführung der Projekte sinnvollen Quellen (Skripte, Fachbücher, Manuals, Datenblätter, Internetseiten). / All sources that are useful for completion of the projects (lecture notes, textbooks, manuals, data sheets, internet pages).

<u>Titel</u>	Тур	<u>sws</u>
Differentialgleichungen 2 (Partielle Differentialgleichungen)	Vorlesung	2
Differentialgleichungen 2 (Partielle Differentialgleichungen)	Gruppenübung	1
Differentialgleichungen 2 (Partielle Differentialgleichungen)	Hörsaalübung	1
Komplexe Funktionen	Vorlesung	2
Komplexe Funktionen	Gruppenübung	1
Komplexe Funktionen	Hörsaalübung	1

Modulverantwortlich:

Prof. Anusch Taraz

Zulassungsvoraussetzung:

Keine

Empfohlene Vorkenntnisse:

Mathematik I - III

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

- Studierende können die grundlegenden Begriffe der Mathematik IV benennen und anhand von Beispielen erklären.
- Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern.
- Sie kennen Beweisstrategien und können diese wiedergeben.

Fertigkeiten:

- Studierende k\u00f6nnen Aufgabenstellungen aus der Mathematik IV mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden l\u00f6sen.
- Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu
 erschließen und können diese verifizieren.
- Studierende können zu gegebenen Problemstellungen einen geeigneten Lösungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten.

Personale Kompetenzen:

Sozialkompetenz:

- Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache.
- Sie k\u00f6nnen dabei insbesondere neue Konzepte adressatengerecht kommunizieren und anhand von Beispielen das Verst\u00e4ndnis der Mitstudierenden \u00fcberpr\u00fcfen und vertiefen.

Selbstständigkeit:

- Studierende können eigenständig ihr Verständnis komplexer Konzepte überprüfen, noch offene Fragen auf den Punkt bringen und sich gegebenenfalls gezielt Hilfe holen.
- Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume zielgerichtet an schwierigen Problemstellungen zu arbeiten.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 68, Präsenzstudium: 112

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht

Computer Science: Vertiefung Computerorientierte Mathematik: Wahlpflicht

Elektrotechnik: Kernqualifikation: Pflicht

 ${\bf Elektrotechnik\ myTrack:\ Kernqualifikation:\ Pflicht}$

General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht

General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht

General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht

Informatik-Ingenieurwesen: Vertiefung Ingenieurwesen: Wahlpflicht Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht

Maschinenbau: Vertiefung Mechatronik: Pflicht

Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht

Lehrveranstaltung: Differentialgleichungen 2 (Partielle Differentialgleichungen) (Vorlesung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Grundzüge der Theorie und Numerik partieller Differentialgleichungen

- Beispiele für partielle Differentialgleichungen
- quasilineare Differentialgleichungen erster Ordnung
- Normalformen linearer Differentialgleichungen zweiter Ordnung
- harmonische Funktionen und Maximumprinzip
- Maximumprinzip für die Wärmeleitungsgleichung
- Wellengleichung
- Lösungsformel nach Liouville
- spezielle Funktionen
- Differenzenverfahren
- finite Elemente

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- P. Henrici, R. Jelsch: Komplexe Analysis für Ingenieure, Birkhäuser Verlag, Basel, 1998
- A. Tveito, R. Winther: Einführung in partielle Differentialgleichungen, Springer Verlag, Berlin, Heidelberg, New York, 2002

Lehrveranstaltung: Differentialgleichungen 2 (Partielle Differentialgleichungen) (Übung)

Dozenten

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Grundzüge der Theorie und Numerik partieller Differentialgleichungen

- Beispiele für partielle Differentialgleichungen
- quasilineare Differentialgleichungen erster Ordnung
- Normalformen linearer Differentialgleichungen zweiter Ordnung
- harmonische Funktionen und Maximumprinzip
- Maximumprinzip für die Wärmeleitungsgleichung
- Wellengleichung
- · Lösungsformel nach Liouville
- spezielle Funktionen
- Differenzenverfahren
- finite Elemente

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- P. Henrici, R. Jelsch: Komplexe Analysis für Ingenieure, Birkhäuser Verlag, Basel, 1998
- A. Tveito, R. Winther: Einführung in partielle Differentialgleichungen, Springer Verlag, Berlin, Heidelberg, New York, 2002

Lehrveranstaltung: Differentialgleichungen 2 (Partielle Differentialgleichungen) (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Grundzüge der Theorie und Numerik partieller Differentialgleichungen

- Beispiele für partielle Differentialgleichungen
- quasilineare Differentialgleichungen erster Ordnung
- Normalformen linearer Differentialgleichungen zweiter Ordnung
- harmonische Funktionen und Maximumprinzip
- Maximumprinzip für die Wärmeleitungsgleichung
- Wellengleichung
- Lösungsformel nach Liouville
- spezielle Funktionen

- Differenzenverfahren
- finite Elemente

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- P. Henrici, R. Jelsch: Komplexe Analysis für Ingenieure, Birkhäuser Verlag, Basel, 1998
- A. Tveito, R. Winther: Einführung in partielle Differentialgleichungen, Springer Verlag, Berlin, Heidelberg, New York, 2002

Lehrveranstaltung: Komplexe Funktionen (Vorlesung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Grundzüge der Funktionentheorie

- Funktionen einer komplexen Variable
- Komplexe Differentiation
- Konforme Abbildungen
- Komplexe Integration
- Cauchyscher Hauptsatz
- Cauchysche Integralformel
- Taylor- und Laurent-Reihenentwicklung
- Singularitäten und Residuen
- Integraltransformationen: Fourier und Laplace-Transformation

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- P. Henrici, R. Jelsch: Komplexe Analysis für Ingenieure, Birkhäuser Verlag, Basel, 1998

Lehrveranstaltung: Komplexe Funktionen (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Grundzüge der Funktionentheorie

- Funktionen einer komplexen Variable
- Komplexe Differentiation
- Konforme Abbildungen
- Komplexe Integration
- Cauchyscher Hauptsatz
 Cauchysche Internalianus
- Cauchysche Integralformel
- Taylor- und Laurent-Reihenentwicklung
- · Singularitäten und Residuen
- Integraltransformationen: Fourier und Laplace-Transformation

Literatur:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
- P. Henrici, R. Jelsch: Komplexe Analysis für Ingenieure, Birkhäuser Verlag, Basel, 1998

Lehrveranstaltung: Komplexe Funktionen (Übung)

Dozenten:

Dozenten des Fachbereiches Mathematik der UHH

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Grundzüge der Funktionentheorie

- Funktionen einer komplexen Variable
 - Komplexe Differentiation
 - Kompleye Integration
 - Komplexe Integration
 - Cauchyscher HauptsatzCauchysche Integralformel

- Taylor- und Laurent-Reihenentwicklung
 Singularitäten und Residuen
 Integraltransformationen: Fourier und Laplace-Transformation

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure, Band 2; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000
 P. Henrici, R. Jelsch: Komplexe Analysis für Ingenieure, Birkhäuser Verlag, Basel, 1998

<u>Titel</u>	Тур	SWS
Theoretische Elektrotechnik II: Zeitabhängige Felder	Vorlesung	3
Theoretische Elektrotechnik II: Zeitabhängige Felder	Gruppenübung	2

Modulverantwortlich:

Prof. Christian Schuster

Zulassungsvoraussetzung:

Elektrotechnik I, Elektrotechnik II, Mathematik II, Mathematik II, Mathematik III, Mathematik IV, Theoretische Elektrotechnik I

Empfohlene Vorkenntnisse:

Grundlagen der Elektrotechnik und der höheren Mathematik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können die grundlegenden Formeln, Zusammenhänge und Methoden der Theorie zeitabhängiger elektromagnetischer Felder erklären. Sie können das prinzipielle Verhalten von quasistationären und voll dynamischen Feldern in Abhängigkeit von ihren Quellen erläutern. Sie können die Eigenschaften komplexer elektromagnetischer Felder mit Hilfe des Superpositionsprinzips auf Basis einfacher Feldlösungen beschreiben. Sie können einen Überblick über die Anwendungen zeitabhängiger elektromagnetischer Felder in der elektrotechnischen Praxis geben.

Fertigkeiten:

Die Studierenden können eine Reihe von Verfahren zur Lösung der Diffusions- und der Wellengleichung für allgemeine zeitabhängige Feldprobleme anwenden. Sie können einschätzen, welche prinzipiellen Effekte gewisse zeitabhängige Feldquellen erzeugen und können diese quantitativ analysieren. Sie können abgeleitete Größen zur Charakterisierung voll dynamischer Felder (Wellenimpedanz, Skintiefe, Poynting-Vektor, Strahlungswiderstand usw.) aus den Feldern ableiten und für die Anwendung in der elektrotechnischen Praxis deuten.

Personale Kompetenzen:

Sozialkompetenz:

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Kleingruppenübungen).

Selbstständigkeit:

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen in Bezug zu aktuellen Forschungsthemen an der TUHH setzen (z.B. im Bereich der Hochfrequenztechnik und Optik).

Leistungspunkte:

6IP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht

Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwesen: Wahlpflicht

Technomathematik: Kernqualifikation: Wahlpflicht

Lehrveranstaltung: Theoretische Elektrotechnik II: Zeitabhängige Felder (Vorlesung)

Dozenten:

Prof. Christian Schuster

Sprachen:

Zeitraum:

- Theorie und prinzipielles Verhalten quasistationärer Felder
- Induktion und Induktionsgesetz
- Skin Effekt und Wirbelströme
- Abschirmung zeitlich veränderlicher magnetischer Felder
- Theorie und prinzipielles Verhalten voll dynamischer Felder
- Wellen-Gleichung und Eigenschaften ebener Wellen
- Polarisation und Superposition ebener Wellen
- Reflexion und Brechung ebener Wellen an Grenzflächen
- Theorie der Wellenleiter

- Rechteckhohlleiter, planarer optischer Wellenleiter
- elektrische und magnetische Dipolstrahlung
- Einfache Antennen-Arrays

Literatur:

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)
- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)
- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)
 D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)
- J. Edminister, "Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)
- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)

Lehrveranstaltung: Theoretische Elektrotechnik II: Zeitabhängige Felder (Übung)

Dozenten:

Prof. Christian Schuster

Sprachen:

Zeitraum:

WS

Inhalt:

- Theorie und prinzipielles Verhalten quasistationärer Felder
- Induktion und Induktionsgesetz
- Skin Effekt und Wirbelströme
- Abschirmung zeitlich veränderlicher magnetischer Felder
- Theorie und prinzipielles Verhalten voll dynamischer Felder
- Wellen-Gleichung und Eigenschaften ebener Wellen
- Polarisation und Superposition ebener Wellen
- Reflexion und Brechung ebener Wellen an Grenzflächen
- Theorie der Wellenleiter
- Rechteckhohlleiter, planarer optischer Wellenleiter
- elektrische und magnetische Dipolstrahlung
- Einfache Antennen-Arrays

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)
- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)
- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)
 D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)
- J. Edminister, "Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)
- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)

 Titel
 Typ
 SWS

 Technische Mechanik I
 Vorlesung
 3

 Technische Mechanik I
 Gruppenübung
 2

Modulverantwortlich:

Prof. Uwe Weltin

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Der Studierende kann grundlegende Zusammenhänge, Theorien und Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemen starrer Körper und Grundlagen der Elastostatik benennen.

Fertigkeiten:

Der Studierende kann Theorien und Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemen starrer Körper und Grundlagen der Elastostatik anwenden.

Personale Kompetenzen:

Sozialkompetenz

Der Studierende kann lösungsorientiert in heterogenen Kleingruppen arbeiten und erlernt und vertieft das gegenseitige Helfen.

Selbstständigkeit:

Der Studierende ist fähig eigenständig Aufgaben aus dieser Lehrveanstaltung zu lösen.

Leistungspunkte:

6 LP

Studienleistung:

Klausu

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Elektrotechnik myTrack: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht

Lehrveranstaltung: Technische Mechanik I (Vorlesung)

Dozenten:

Prof. Uwe Weltin

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemem starrer Körper

- Newton-Euler-Verfahren
- Energiemethoden

Grundlagen der Elastizitätslehre

• Kräfte und Verformungen in elastischen Systemen

- Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 1: Statik, Springer Vieweg, 2013
- Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 2: Elastostatik, Springer Verlag, 2011
- Gross, D; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln und Aufgaben zur Technischen Mechanik 1: Statik, Springer Vieweg, 2013
- Gross, D; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln und Aufgaben zur Technischen Mechanik 2: Elastostatik, Springer Verlag, 2011
- Hibbeler, Russel C.: Technische Mechanik 1 Statik, Pearson Studium, 2012
- Hibbeler, Russel C.: Technische Mechanik 2 Festigkeitslehre, Pearson Studium, 2013
- Hauger, W.; Mannl, V.; Wall, W.A.; Werner, E.: Aufgaben zu Technische Mechanik 1-3: Statik, Elastostatik, Kinetik, Springer Verlag, 2011

Dozenten:

Prof. Uwe Weltin

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemem starrer Körper

- Newton-Euler-Verfahren
- Energiemethoden

Grundlagen der Elastizitätslehre

• Kräfte und Verformungen in elastischen Systemen

- Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 1: Statik, Springer Vieweg, 2013
- Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 2: Elastostatik, Springer Verlag, 2011
- Gross, D; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln und Aufgaben zur Technischen Mechanik 1: Statik, Springer Vieweg, 2013
- Gross, D; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln und Aufgaben zur Technischen Mechanik 2: Elastostatik, Springer Verlag, 2011
- Hibbeler, Russel C.: Technische Mechanik 1 Statik, Pearson Studium, 2012
- Hibbeler, Russel C.: Technische Mechanik 2 Festigkeitslehre, Pearson Studium, 2013
- Hauger, W.; Mannl, V.; Wall, W.A.; Werner, E.: Aufgaben zu Technische Mechanik 1-3: Statik, Elastostatik, Kinetik, Springer Verlag, 2011

TitelTypSWSNumerische Mathematik IVorlesung2Numerische Mathematik IGruppenübung2

Modulverantwortlich:

Prof. Sabine Le Borne

Zulassungsvoraussetzung:

• Mathematik I + II für Ingenieurstudierende (deutsch oder englisch)

oder

• Analysis & Lineare Algebra I + II für Technomathematiker

Empfohlene Vorkenntnisse:

- Vorlesungsinhalte der Veranstaltungen der Zulassungsvoraussetzungen
- MATLAB Grundkenntnisse

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen

Studierende können

- numerische Verfahren zur Interpolation, Integration, Lösung von Ausgleichproblemen, Lösung von Eigenwertproblemen und nichtlinearen Nullstellenproblemen benennen und deren Kernideen erläutern,
- Konvergenzaussagen zu den numerischen Methoden wiedergeben.
- Aspekte der praktischen Durchführung numerischer Verfahren im Hinblick auf Rechenzeit und Speicherbedarf erklären.

Fertigkeiten:

Studierende sind in der Lage,

- numerische Methoden in MATLAB zu implementieren, anzuwenden und zu vergleichen,
- das Konvergenzverhalten numerischen Methoden in Abhängigkeit vom gestellten Problem und des verwendeten Lösungsalgorithmus zu begründen.
- zu gegebener Problemstellung einen geeigneten Lösungsansatz auszuwählen und durchzuführen.

Personale Kompetenzen:

Sozialkompetenz:

. Studierende können

> in heterogen zusammengesetzten Teams (d.h. aus unterschiedlichen Studiengängen und mit unterschiedlichem Hintergrundwissen) zusammenarbeiten, sich theoretische Grundlagen erklären sowie bei praktischen Implementierungsaspekten der Algorithmen unterstützen.

Selbstständigkeit:

Studierende sind fähig

- selbst einzuschätzen, ob sie die begleitenden theoretischen und praktischen Übungsaufgaben besser allein oder im Team lösen,
- ihren Lernstand konkret zu beurteilen und gegebenenfalls gezielt Fragen zu stellen und Hilfe zu suchen.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

 $\label{local-loc$

Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht

Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Computerorientierte Mathematik: Wahlpflicht

Elektrotechnik: Kernqualifikation: Wahlpflicht

Elektrotechnik myTrack: Kernqualifikation: Wahlpflicht

General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht

General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht

General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht

Informatik-Ingenieurwesen: Kernqualifikation: Pflicht

Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht

Lehrveranstaltung: Numerische Mathematik I (Vorlesung)

Dozenten:

Prof. Sabine Le Borne

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- 1. Fehleranalyse: Zahldarstellung, Fehlertypen, Kondition, Stabilität
- 2. Interpolation: Polynom- und Splineinterpolation
- 3. Numerische Integration und Differentiation: Fehlerordnung, Newton-Cotes Formeln, Fehlerabschätzung, Gauss-Quadratur, adaptive Quadratur, Differenzenformel
- 4. Lineare Systeme: LR und Cholesky Zerlegung, Matrixnormen, Kondition
- Lineare Ausgleichsprobleme: Normalgleichungen, Gram-Schmidt und Householder Orthogonalisierung, Singulärwertzerlegung, Regularisierung
- 6. Eigenwertaufgaben: Potenzmethode, inverse Iteration, QR-Algorithmus
- Nichtlineare Gleichungssysteme: Fixpunkiteration, Nullstellenverfahren für reellwertige Funktionen, Newton und Quasi-Newton Verfahren für Systeme

Literatur:

- Stoer/Bulirsch: Numerische Mathematik 1, Springer
- Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer

Lehrveranstaltung: Numerische Mathematik I (Übung)

Dozenten:

Prof. Sabine Le Borne

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- 1. Fehleranalyse: Zahldarstellung, Fehlertypen, Kondition, Stabilität
- 2. Interpolation: Polynom- und Splineinterpolation
- 3. Numerische Integration und Differentiation: Fehlerordnung, Newton-Cotes Formeln, Fehlerabschätzung, Gauss-Quadratur, adaptive Quadratur, Differenzenformel
- 4. Lineare Systeme: LR und Cholesky Zerlegung, Matrixnormen, Kondition
- Lineare Ausgleichsprobleme: Normalgleichungen, Gram-Schmidt und Householder Orthogonalisierung, Singulärwertzerlegung, Regularisierung
- 6. Eigenwertaufgaben: Potenzmethode, inverse Iteration, QR-Algorithmus
- Nichtlineare Gleichungssysteme: Fixpunkiteration, Nullstellenverfahren für reellwertige Funktionen, Newton und Quasi-Newton Verfahren für Systeme

- Stoer/Bulirsch: Numerische Mathematik 1, Springer
- Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer

 Titel
 Typ
 SWS

 Einführung in die Nachrichtentechnik und ihre stochastischen Methoden
 Vorlesung
 3

 Einführung in die Nachrichtentechnik und ihre stochastischen Methoden
 Hörsaalübung
 1

Modulverantwortlich:

Prof. Gerhard Bauch

Zulassungsvoraussetzung:

Mathematik 1-3 Signale und Systeme

Empfohlene Vorkenntnisse:

Grundkenntnisse in Wahrscheinlichkeitsrechnung

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden kennen und verstehen die grundlegenden Funktionseinheiten eines Nachrichtenübertragungssystems. Sie können die einzelnen Funktionsblöcke mit Hilfe grundlegender Kenntnisse der Signal- und Systemtheorie sowie der Theorie stochastischer Prozesse beschreiben und analysieren. Sie kennen die entscheidenden Resourcen und Bewertungskriterien der Nachrichtenübertragung und können ein elementares nachrichtentechnisches System entwerfen und beurteilen.

Fertigkeiten:

Die Studierenden sind in der Lage, ein elementares nachrichtentechnisches System zu entwerfen und zu beurteilen. Insbesondere können Sie den Bedarf an Resourcen wie Bandbreite und Leistung abschätzen. Sie sind in der Lage, wichtige Beurteilungskriterien wie die Bandbreiteneffizienz oder die Bitfehlerwahrscheinlichkeit elementarer Nachrichtenübertragungssysteme abzuschätzen und darauf basierend ein Übertragungsverfahren auszuwählen.

Personale Kompetenzen:

Sozialkompetenza

Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten.

Selbstständigkeit:

Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern.

Leistungspunkte:

6 LP

Studienleistung: Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Computer Science: Vertiefung Technische Informatik: Wahlpflicht

Elektrotechnik: Kernqualifikation: Pflicht

Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht

Technomathematik: Kernqualifikation: Wahlpflicht

Lehrveranstaltung: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden (Vorlesung)

Dozenten:

Prof. Gerhard Bauch

Sprachen:

DE/EN

Zeitraum:

WS

Inhalt:

- Grundlagen stochastischer Prozesse
- Einführung in die Nachrichtentechnik
- Quadraturamplitudenmodulation
- Beschreibung hochfrequenter Nachrichtenübertragung im äquivalenten Basisband
- Übertragungskanäle, Kanalmodelle
- Analog-Digital-Wandlung: Abtastung, Quantisierung, Pulsecodemodulation (PCM)
- · Grundlagen der Informationstheorie, Quellencodierung und Kanalcodierung
- Digitale Basisbandübertragung: Pulsformung, Augendiagramm, 1. und 2. Nyquist-Bedingung, Matched-Filter, Detektion, Fehlerwahrscheinlichkeit
- Grundlagen digitaler Modulationsverfahren

Literatur

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

M. Bossert: Einführung in die Nachrichtentechnik, Oldenbourg.

- J.G. Proakis, M. Salehi: Grundlagen der Kommunikationstechnik. Pearson Studium.
- J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.
- S. Haykin: Communication Systems. Wiley
- J.G. Proakis, M. Salehi: Communication Systems Engineering. Prentice-Hall.
- J.G. Proakis, M. Salehi, G. Bauch, Contemporary Communication Systems. Cengage Learning.

Lehrveranstaltung: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden (Übung)

Dozenten:

Prof. Gerhard Bauch

Sprachen:

DE/EN

Zeitraum:

WS

Inhalt:

- Grundlagen stochastischer Prozesse
- Einführung in die Nachrichtentechnik
- Quadraturamplitudenmodulation
- Beschreibung hochfrequenter Nachrichtenübertragung im äquivalenten Basisband
- Übertragungskanäle, Kanalmodelle
- Analog-Digital-Wandlung: Abtastung, Quantisierung, Pulsecodemodulation (PCM)
- Grundlagen der Informationstheorie, Quellencodierung und Kanalcodierung
- Digitale Basisbandübertragung: Pulsformung, Augendiagramm, 1. und 2. Nyquist-Bedingung, Matched-Filter, Detektion, Fehlerwahrscheinlichkeit
- Grundlagen digitaler Modulationsverfahren

Literatur:

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

M. Bossert: Einführung in die Nachrichtentechnik, Oldenbourg.

J.G. Proakis, M. Salehi: Grundlagen der Kommunikationstechnik. Pearson Studium.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

J.G. Proakis, M. Salehi: Communication Systems Engineering. Prentice-Hall.

J.G. Proakis, M. Salehi, G. Bauch, Contemporary Communication Systems. Cengage Learning.

 Titel
 Typ
 SWS

 Elektronische Bauelemente
 Vorlesung
 3

 Elektronische Bauelemente
 Problemorientierte Lehrveranstaltung
 2

Modulverantwortlich:

Prof. Hoc Khiem Trieu

Zulassungsvoraussetzung:

Erfolgreiche Teilnahme an Physik für Ingenieure und Werkstoffe der Elektrotechnik oder Veranstaltungen mit äquivalentem Inhalt

Empfohlene Vorkenntnisse:

Aufbau der Atome und Quantentheorie, elektrische Ströme in Festkörpern, Grundlagen der Festkörperphysik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können

- die Grundlagen der Halbleiterphysik darstellen,
- die Wirkprinzipien wichtiger Halbleiterbauelemente erklären,
- Bauelementfunktionen und Ersatzschaltbilder angeben sowie ihre Herleitung erläutern und
- die Grenzen der Modelle diskutieren.

Fertigkeiten:

Die Studierenden sind in der Lage

- Bauelemente im jeweiligen Grundbetrieb anzuwenden,
- eigenständig physikalische Zusammenhänge zu erkennen und Lösungen für komplexe Aufgabenstellungen zu finden.

Personale Kompetenzen:

Sozialkompetenz:

Studierende können in Gruppen Versuche planen, durchführen sowie die Ergebnisse präsentieren und vor anderen vertreten. Selbstständigkeit:

Studierende sind fähig sich eigenständig das für die Versuche notwendige Wissen mit Literatur zu erschließen.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Elektrotechnik: Kernqualifikation: Pflicht Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht

Lehrveranstaltung: Elektronische Bauelemente (Vorlesung)

Dozenten:

Prof. Hoc Khiem Trieu

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- dotierte Halbleiter (Halbleiter, Kristalstruktur, Bändermodell, Dotierung, effektive Masse, Zustandsdichte, Besetzungswahrscheinlichkeiten, Massenwirkungsgesetz, Übergänge zwischen Energieniveaus, Ladungsträgerlebensdauer, Leitungsmechanismen: Feldstrom- und Diffusionsstrom; Gleichgewicht in Halbleitern, Halbleitergleichungen)
- Der pn-Übergang (Stromloser Zustand, Bandverlauf der Sperrschicht im stromlosen Zustand, Gleichstromverhalten, Herleitung der Kennlinie, Berücksichtigung der Sperrschichtrekombination, Wechselstrom- und Schaltverhalten, Durchbruchmechanismen, verschiedene Diodentypen: Zener-Diode, Tunnel-Diode, Rückwärtsdiode, Photodiode, LED, Laserdioden)
- Der Bipolartransistor (Funktionsprinzip, statisches Verhalten: Berechnung von Basis-, Kollektor- und Emitterstrom, Betriebsmodi; Nichtidealitäten: reale Dotierung, Earlyeffekt, Durchbruch, Generation-Rekombinationsstrom und Hochstromeffekt; Ebers-Moll-Modell: Kennlinienfeld, Ersatzschaltbild; Frequenzantwort, Schaltverhalten, Transistor mit Heteroübergang)
- Unipolare Bauelemente (Halbleiter-Randschichten: Oberflächenzustände, Austrittsarbeit, Bändermodell; Metall-Halbleiter-Kontakte: Schottky-Kontakt, Strom-Spannung-Abhängigkeit, Ohmscher Kontakt; Sperrschicht-Feldeffekt-Transistor: Funktionsprinzip, Strom-

Spannungs-Kennlinie, Kleinsignal-Verhalten, Durchbruchsverhalten; MESFET: Funktionsprinzip, selbstleitender und selbstsperrender MESFET; MIS-Struktur: Akkumulation, Verarmung, Inversion, starke Inversion, Flachband-Spannung, Oxidladungen, Schwellenspannung, Kapazität-Spannungs-Verhalten; MOSFET: Aufbau, Funktionsprinzip, Strom-Spannungs-Kennlinie, Frequenzverhalten, Subthreshold-Verhalten, Schwellenspannung, Bauelement-Skalierung; CMOS)

Literatur:

S.M. Sze: Semiconductor devices, Physics and Technology, John Wiley & Sons (1985)F. Thuselt: Physik der Halbleiterbauelemente, Springer (2011)

T. Thille, D. Schmitt-Landsiedel: Mikroelektronik, Halbleiterbauelemente und deren Anwendung in elektronischen Schaltungen, Springer (2004)

B.L. Anderson, R.L. Anderson: Fundamentals of Semiconductor Devices, McGraw-Hill (2005)

D.A. Neamen: Semiconductor Physics and Devices, McGraw-Hill (2011)

M. Shur: Introduction to Electronic Devices, John Wiley & Sons (1996)

S.M. Sze: Physics of semiconductor devices, John Wiley & Sons (2007)

H. Schaumburg: Halbleiter, B.G. Teubner (1991)

A. Möschwitzer: Grundlagen der Halbleiter-&Mikroelektronik, Bd1 Elektronische Halbleiterbauelemente, Carl Hanser (1992)

H.-G. Unger, W. Schultz, G. Weinhausen: Elektronische Bauelemente und Netzwerke I, Physikalische Grundlagen der

Halbleiterbauelemente, Vieweg (1985)

Lehrveranstaltung: Elektronische Bauelemente (Problemorientierte Lehrveranstaltung)

Dozenten:

Prof. Hoc Khiem Trieu

Sprachen:

DE

Zeitraum:

WS

Inhalt:

- dotierte Halbleiter (Halbleiter, Kristalstruktur, Bändermodell, Dotierung, effektive Masse, Zustandsdichte, Besetzungswahrscheinlichkeiten, Massenwirkungsgesetz, Übergänge zwischen Energieniveaus, Ladungsträgerlebensdauer, Leitungsmechanismen: Feldstrom- und Diffusionsstrom; Gleichgewicht in Halbleitern, Halbleitergleichungen)
- Der pn-Übergang (Stromloser Zustand, Bandverlauf der Sperrschicht im stromlosen Zustand, Gleichstromverhalten, Herleitung der Kennlinie, Berücksichtigung der Sperrschichtrekombination, Wechselstrom- und Schaltverhalten, Durchbruchmechanismen, verschiedene Diodentypen: Zener-Diode, Tunnel-Diode, Rückwärtsdiode, Photodiode, LED, Laserdioden)
- Der Bipolartransistor (Funktionsprinzip, statisches Verhalten: Berechnung von Basis-, Kollektor- und Emitterstrom, Betriebsmodi;
 Nichtidealitäten: reale Dotierung, Earlyeffekt, Durchbruch, Generation-Rekombinationsstrom und Hochstromeffekt; Ebers-Moll-Modell: Kennlinienfeld. Ersatzschaltbild: Frequenzantwort, Schaltverhalten. Transistor mit Heteroübergang)
- Unipolare Bauelemente (Halbleiter-Randschichten: Oberflächenzustände, Austrittsarbeit, Bändermodell; Metall-Halbleiter-Kontakte: Schottky-Kontakt, Strom-Spannung-Abhängigkeit, Ohmscher Kontakt; Sperrschicht-Feldeffekt-Transistor: Funktionsprinzip, Strom-Spannungs-Kennlinie, Kleinsignal-Verhalten, Durchbruchsverhalten; MESFET: Funktionsprinzip, selbstleitender und selbstsperrender MESFET; MIS-Struktur: Akkumulation, Verarmung, Inversion, starke Inversion, Flachband-Spannung, Oxidladungen, Schwellenspannung, Kapazität-Spannungs-Verhalten; MOSFET: Aufbau, Funktionsprinzip, Strom-Spannungs-Kennlinie, Frequenzverhalten, Subthreshold-Verhalten, Schwellenspannung, Bauelement-Skalierung; CMOS)

Literatur:

S.M. Sze: Semiconductor devices, Physics and Technology, John Wiley & Sons (1985)F. Thuselt: Physik der Halbleiterbauelemente, Springer (2011)

T. Thille, D. Schmitt-Landsiedel: Mikroelektronik, Halbleiterbauelemente und deren Anwendung in elektronischen Schaltungen, Springer (2004)

B.L. Anderson, R.L. Anderson: Fundamentals of Semiconductor Devices, McGraw-Hill (2005)

D.A. Neamen: Semiconductor Physics and Devices, McGraw-Hill (2011)

M. Shur: Introduction to Electronic Devices, John Wiley & Sons (1996)

S.M. Sze: Physics of semiconductor devices, John Wiley & Sons (2007)

H. Schaumburg: Halbleiter, B.G. Teubner (1991)

A. Möschwitzer: Grundlagen der Halbleiter-&Mikroelektronik, Bd1 Elektronische Halbleiterbauelemente, Carl Hanser (1992)

H.-G. Unger, W. Schultz, G. Weinhausen: Elektronische Bauelemente und Netzwerke I, Physikalische Grundlagen der Halbleiterbauelemente, Vieweg (1985)

TitelTypSWSGrundlagen der RegelungstechnikVorlesung2Grundlagen der RegelungstechnikGruppenübung2

Modulverantwortlich:

Prof. Herbert Werner

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Grundkenntnisse der Behandlung von Signalen und Systemen im Zeit- und Frequenzbereich und der Laplace-Transformation.

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

- Studierende k\u00f6nnen das Verhalten dynamischer Systeme in Zeit- und Frequenzbereich darstellen und interpretieren, und insbesondere die Eigenschaften Systeme 1. und 2. Ordnung erl\u00e4utern.
- · Sie können die Dynamik einfacher Regelkreise erklären und anhand von Frequenzgang und Wurzelortskurve interpretieren.
- Sie k\u00f6nnen das Nyquist-Stabilit\u00e4tskriterium sowie die daraus abgeleiteten Stabilit\u00e4tstreserven erkl\u00e4ren.
- · Sie können erklären, welche Rolle die Phasenreserve in der Analyse und Synthese von Regelkreisen spielt.
- Sie können die Wirkungsweise eines PID-Reglers anhand des Frequenzgangs interpretieren.
- Sie können erklären, welche Aspekte bei der digitalen Implementierung zeitkontinuierlich entworfener Regelkreise berücksichtigt werden müssen.

Fertigkeiten:

- Studierende können Modelle linearer dynamischer Systeme vom Zeitbereich in den Frequenzbereich transformieren und umgekehrt.
- Sie können das Verhalten von Systemen und Regelkreisen simulieren und bewerten.
- Sie können PID-Regler mithilfe heuristischer Einstellregeln (Ziegler-Nichols) entwerfen.
- · Sie können anhand von Wurzelortskurve und Frequenzgang einfache Regelkreise entwerfen und analysieren.
- Sie können zeitkontinuierliche Modelle dynamischer Regler für die digitale Implementierung zeitdiskret approximieren.
- Sie beherrschen die einschlägigen Software-Werkzeuge (Matlab Control Toolbox, Simulink) für die Durchführung all dieser Aufgaben.

Personale Kompetenzen:

Sozialkompetenz:

Studierende können in kleinen Gruppen fachspezifische Fragen gemeinsam bearbeiten und ihre Reglerentwürfe experimentell testen und bewerten

Selbstständigkeit:

Studierende können sich Informationen aus bereit gestellten Quellen (Skript, Software-Dokumentation, Versuchsunterlagen) beschaffen und für die Lösung gegebener Probleme verwenden.

Sie können ihren Wissensstand mit Hilfe wöchentlicher On-Line Tests kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht

Bioverfahrenstechnik: Kernqualifikation: Pflicht

 $Computer \ Science: Vertiefung \ Computer orientierte \ Mathematik: \ Wahlpflicht$

Elektrotechnik: Kernqualifikation: Pflicht

Elektrotechnik myTrack: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Wahlpflicht

Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht

Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht

Technomathematik: Vertiefung Ingenieurwissenschaften: Wahlpflicht

Verfahrenstechnik: Kernqualifikation: Pflicht

Lehrveranstaltung: Grundlagen der Regelungstechnik (Vorlesung)

Dozenten:

Prof. Herbert Werner

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Signale und Systeme

- Lineare Systeme, Differentialgleichungen und Übertragungsfunktionen
- Systeme 1. und 2. Ordnung, Pole und Nullstellen, Impulsantwort und Sprungantwort
- Stabilität

Regelkreise

- Prinzip der Rückkopplung: Steuerung oder Regelung
- Folgeregelung und Störunterdrückung
- Arten der Rückführung, PID-Regelung
- · System-Typ und bleibende Regelabweichung
- Inneres-Modell-Prinzip

Wurzelortskurven

- Konstruktion und Interpretation von Wurzelortskurven
- Wurzelortskurven von PID-Regelkreisen

Frequenzgang-Verfahren

- Frequenzgang, Bode-Diagramm
- · Minimalphasige und nichtminimalphasige Systeme
- Nyquist-Diagramm, Nyquist-Stabilitätskriterium, Phasenreserve und Amplitudenreserve
- Loop shaping, Lead-Lag-Kompensatoren
- Frequenzgang von PID-Regelkreisen

Totzeitsysteme

- · Wurzelortskurve und Frequenzgang von Totzeitsystemen
- Smith-Prädiktor

Digitale Regelung

- · Abtastsysteme, Differenzengleichungen
- Tustin-Approximation, digitale PID-Regler

Software-Werkzeuge

- Einführung in Matlab, Simulink, Control Toolbox
- Rechnergestützte Aufgaben zu allen Themen der Vorlesung

Literatur:

- Werner, H., Lecture Notes "Introduction to Control Systems"
- G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2009
- K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2010
- R.C. Dorf and R.H. Bishop, "Modern Control Systems", Addison Wesley, Reading, MA 2010

Lehrveranstaltung: Grundlagen der Regelungstechnik (Übung)

Dozenten:

Prof. Herbert Werner

Sprachen:

DE

Zeitraum:

WS

Inhalt:

Signale und Systeme

- Lineare Systeme, Differentialgleichungen und Übertragungsfunktionen
- Systeme 1. und 2. Ordnung, Pole und Nullstellen, Impulsantwort und Sprungantwort
- Stabilität

Regelkreise

- Prinzip der Rückkopplung: Steuerung oder Regelung
- Folgeregelung und Störunterdrückung
- Arten der Rückführung, PID-Regelung
- System-Typ und bleibende Regelabweichung
- Inneres-Modell-Prinzip

Wurzelortskurven

- Konstruktion und Interpretation von Wurzelortskurven
- Wurzelortskurven von PID-Regelkreisen

Frequenzgang-Verfahren

- Frequenzgang, Bode-Diagramm
- Minimalphasige und nichtminimalphasige Systeme
- Nyquist-Diagramm, Nyquist-Stabilitätskriterium, Phasenreserve und Amplitudenreserve
- · Loop shaping, Lead-Lag-Kompensatoren
- Frequenzgang von PID-Regelkreisen

Totzeitsysteme

- Wurzelortskurve und Frequenzgang von Totzeitsystemen
- Smith-Prädiktor

Digitale Regelung

- Abtastsysteme, Differenzengleichungen
- Tustin-Approximation, digitale PID-Regler

Software-Werkzeuge

- Einführung in Matlab, Simulink, Control Toolbox
- Rechnergestützte Aufgaben zu allen Themen der Vorlesung

- Werner, H., Lecture Notes "Introduction to Control Systems"
 G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2009
 K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2010
 R.C. Dorf and R.H. Bishop, "Modern Control Systems", Addison Wesley, Reading, MA 2010

Modul: Computernetworks and Internet Security

Lehrveranstaltungen:

 Titel
 Typ
 SWS

 Rechnernetze und Internet-Sicherheit
 Vorlesung
 3

 Rechnernetze und Internet-Sicherheit
 Gruppenübung
 1

Modulverantwortlich:

Prof. Andreas Timm-Giel

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Students are able to explain important and common Internet protocols in detail and classify them, in order to be able to analyse and develop networked systems in further studies and job.

Fertigkeiten:

Students are able to analyse common Internet protocols and evaluate the use of them in different domains.

Personale Kompetenzen:

Sozialkompetenz:

Selbstständigkeit:

Students can select relevant parts out of high amount of professional knowledge and can independently learn and understand it.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht

Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Elektrotechnik myTrack: Kernqualifikation: Wahlpflicht

General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht

Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Technomathematik: Vertiefung Informatik: Wahlpflicht

Lehrveranstaltung: Computer Networks and Internet Security (Vorlesung)

Dozenten:

Prof. Andreas Timm-Giel, Prof. Dieter Gollmann

Sprachen:

. EN

Zeitraum:

WS

Inhalt:

In this class an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises these basic principles and an introduction to performance modelling are addressed using computing tasks and (virtual) labs.

In the second part of the lecture an introduction to Internet security is given.

This class comprises:

- Application layer protocols (HTTP, FTP, DNS)
- Transport layer protocols (TCP, UDP)
- Network Layer (Internet Protocol, routing in the Internet)
- Data link layer with media access at the example of Ethernet
- Multimedia applications in the Internet
- Network management
- Internet security: IPSec
- · Internet security: Firewalls

Literatur:

- Kurose, Ross, Computer Networking A Top-Down Approach, 6th Edition, Addison-Wesley
- Kurose, Ross, Computernetzwerke Der Top-Down-Ansatz, Pearson Studium; Auflage: 6. Auflage
- W. Stallings: Cryptography and Network Security: Principles and Practice, 6th edition

Further literature is announced at the beginning of the lecture.

Lehrveranstaltung: Computer Networks and Internet Security (Übung)

Dozenten:

Prof. Andreas Timm-Giel, Prof. Dieter Gollmann

Sprachen:

ΕN

Zeitraum:

WS

Inhalt:

In this class an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises these basic principles and an introduction to performance modelling are addressed using computing tasks and (virtual) labs. In the second part of the lecture an introduction to Internet security is given.

This class comprises:

- Application layer protocols (HTTP, FTP, DNS)
- Transport layer protocols (TCP, UDP)
- Network Layer (Internet Protocol, routing in the Internet)
- Data link layer with media access at the example of Ethernet
- Multimedia applications in the Internet
- Network management
- Internet security: IPSec
- · Internet security: Firewalls

Literatur:

- Kurose, Ross, Computer Networking A Top-Down Approach, 6th Edition, Addison-Wesley
- Kurose, Ross, Computernetzwerke Der Top-Down-Ansatz, Pearson Studium; Auflage: 6. Auflage
- W. Stallings: Cryptography and Network Security: Principles and Practice, 6th edition

Further literature is announced at the beginning of the lecture.

 Titel
 Typ
 SWS

 Technische Mechanik II
 Vorlesung
 3

 Technische Mechanik II
 Gruppenübung
 2

Modulverantwortlich:

Prof. Uwe Weltin

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Technische Mechanik I

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Der Studierende kann grundlegende Zusammenhänge, Theorien und Methoden zur Berechnung von Kräften und der Bewegung von Systemen starrer Körpern in 3D benennen.

Fertigkeiten:

Der Studierende kann Theorien und Methoden zur Berechnung von Kräften und der Bewegung von Systemen starrer Körpern in 3D anwenden.

Personale Kompetenzen:

Sozialkompetenz:

Der Studierende kann lösungsorientiert in heterogenen Kleingruppen arbeiten und erlernt und vertieft das gegenseitige Helfen. Selbstständigkeit:

Der Studierende ist fähig, mit Hilfe von Hinweisen eigenständig Aufgaben aus dieser Lehrveanstaltung zu lösen

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Elektrotechnik myTrack: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht

Lehrveranstaltung: Technische Mechanik II (Vorlesung)

Dozenten:

Prof. Uwe Weltin

Sprachen:

DE

Zeitraum:

SS

nhalt:

Methoden zur Berechnung von Kräften und der Bewegung von starren Körpern in 3D

- Newton-Euler-Verfahren
- Energiemethoden

Literatur:

- Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 2: Elastostatik, Springer Verlag, 2011
- Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 3: Kinetik, Springer Vieweg, 2012
- Gross, D; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln und Aufgaben zur Technischen Mechanik 2: Elastostatik, Springer Verlag, 2011
- Gross, D; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln und Aufgaben zur Technischen Mechanik 3: Kinetik, Springer Vieweg, 2012
- Hibbeler, Russel C.: Technische Mechanik 2 Festigkeitslehre, Pearson Studium, 2013
- Hibbeler, Russel C.: Technische Mechanik 3 Dynamik, Pearson Studium, 2012
- Hauger, W.; Mannl, V.; Wall, W.A.; Werner, E.: Aufgaben zu Technische Mechanik 1-3: Statik, Elastostatik, Kinetik, Springer Verlag, 2011

Lehrveranstaltung: Technische Mechanik II (Übung)

Dozenten:

Prof. Uwe Weltin

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Methoden zur Berechnung von Kräften und der Bewegung von starren Körpern in 3D

- Newton-Euler-Verfahren
- Energiemethoden

- Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 2: Elastostatik, Springer Verlag, 2011
 Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 3: Kinetik, Springer Vieweg, 2012
- Gross, D; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln und Aufgaben zur Technischen Mechanik 2: Elastostatik, Springer Verlag, 2011
- Gross, D; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln und Aufgaben zur Technischen Mechanik 3: Kinetik, Springer Vieweg, 2012
- Hibbeler, Russel C.: Technische Mechanik 2 Festigkeitslehre, Pearson Studium, 2013
- Hibbeler, Russel C.: Technische Mechanik 3 Dynamik, Pearson Studium, 2012
- Hauger, W.; Mannl, V.; Wall, W.A.; Werner, E.: Aufgaben zu Technische Mechanik 1-3: Statik, Elastostatik, Kinetik, Springer Verlag, 2011

TitelTypSWSElektrische MaschinenVorlesung3Elektrische MaschinenHörsaalübung2

Modulverantwortlich:

Prof. Günter Ackermann

Zulassungsvoraussetzung:

keine

Empfohlene Vorkenntnisse:

 $Grundkenntnisse\ Mathematik, insbesondere\ komplexe\ Zahlen,\ Integrale,\ Differenziale$

Grundlage der Elektrotechnik und Mechanik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Studierende können die grundlegenden Zusammenhänge bei elektrischen und magnetischen Feldern skizzieren und erläutern. Sie können die Funktion der Grundtypen elektrische Maschinen beschreiben und die zugehörigen Gleichungen und Kennlinien darstellen.

Studierende sind fähig, zweidimensionale elektrische Felder und magnetische Felder insbesondere in Eisenkreisen mit Luftspalt zu berechnen. Sie wenden dabei die üblichen Methoden des Elektromaschinenbaus an.

Sie können das Betriebsverhalten elektrischer Maschinen aus gegebenen Grunddaten analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. Dabei wenden sie die üblichen Ersatzschaltbilder und grafische Verfahren an.

Personale Kompetenzen:

Sozialkompetenz:

keine

Selbstständigkeit:

Studierende sind fähig, eigenständig anwendungsnahe elektrische und magnetische Felder zu berechnen. Sie können eigenständig das Betriebsverhalten elektrischer Maschinen aus deren Grunddaten zu analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 110, Präsenzstudium: 70

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Wahlpflicht

Elektrotechnik: Kernqualifikation: Wahlpflicht Elektrotechnik myTrack: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau: Wahlpflicht

Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht

Maschinenbau: Kernqualifikation: Wahlpflicht Mechatronik: Kernqualifikation: Pflicht

Lehrveranstaltung: Elektrische Maschinen (Vorlesung)

Dozenten:

Prof. Günter Ackermann

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Elektrisches Feld: Coulomb´sches Gesetz, Potenzial, Kondensator, Kraft und Energie

Magnetisches Feld: Kraft, Fluss, Durchflutungssatz, Feld an Grenzflächen, elektrisches Ersatzschaltbild, Hysterese, Induktion, Transformator

Gleichstrommaschinen: Funktionsprinzip, Aufbau, Drehmomenterzeugung, Betriebskennlinien, Kommutierung, Wendepole und Kompensationswicklung,

Asynchronmaschine: Funktionsprinzip, Aufbau, Ersatzschaltbild und Kreisdiagramm, Betriebskennlinien, Auslegung des Läufers, Synchronmaschine: Funktionsprinzip, Aufbau, Verhalten bei Leerlauf und Kurzschluss, Ersatzschaltbild und Zeigerdiagramm Drehzahlvariable Antrieb mit Frequenzumrichtern, Sonderbauformen elektrischer Maschinen, Schrittmotoren

Literatur

Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313 Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - anderer Autoren

Fachbücher "Elektrische Maschinen"

Lehrveranstaltung: Elektrische Maschinen (Ubung)

Dozenten:

Prof. Günter Ackermann

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Bearbeiten von Übungsaufgaben zur Anwendung elektrischer und magnetischer Felder Bearbeiten von Übungsaufgaben zum Betriebsverhalten elektrischer Maschinen

Literatur:

Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313 Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - anderer Autoren Fachbücher "Elektrische Maschinen"

Modul: Einführung in Medizintechnische Systeme

Lehrveranstaltungen:

Tite SWS Typ Einführung in Medizintechnische Systeme 2 Vorlesung 4 Einführung in Medizintechnische Systeme Problemorientierte Lehrveranstaltung

Modulverantwortlich:

Prof. Alexander Schlaefer

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Grundlagen Mathematik (Algebra, Analysis)

Grundlagen Stochastik

Grundlagen Programmierung, R/Matlab

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Die Studierenden können die Funktionen von medizintechnischen Systemen wie beispielsweise bildgebenden Systemen, Assistenzsystemen im OP, medizintechnischen Sensorsystemen und medizintechnischen Informationssystemen erklären. Sie können einen Überblick über Regulatorische Rahmenbedingungen und Standards in der Medizintechnik geben.

Die Studierenden sind in der Lage ihr grundlegendes Verständnis von medizintechnischen Systemem auf praxisrelevante Problemstellungen anzuwenden.

Personale Kompetenzen:

Sozialkompetenza

Die Studierenden können in Gruppen ein medizintechnisches Thema als Projekt beschreiben, in Teilaufgaben untergliedern und gemeinsam bearbeiten.

Selbstständigkeit:

Die Studierenden können ihren Wissensstand einschätzen und ihre Arbeitsergebnisse dokumentieren. Sie können die erzielten Ergebnisse kritisch bewerten und in geeigneter Weise präsentieren.

Leistungspunkte:

6 LP

Studienleistung:

Klausu

Arbeitsaufwand in Stunden:

Eigenstudium: 96, Präsenzstudium: 84

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht

Computer Science: Vertiefung Technische Informatik: Wahlpflicht

Elektrotechnik: Kernqualifikation: Wahlpflicht

Elektrotechnik myTrack: Kernqualifikation: Wahlpflicht

General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht Technomathematik: Vertiefung Ingenieurwissenschaften: Wahlpflicht

Lehrveranstaltung: Einführung in Medizintechnische Systeme (Vorlesung)

Dozenten:

Prof. Alexander Schlaefer

Sprachen:

DF

Zeitraum: SS

Inhalt:

- Bildgebende Systeme
- Assistenzsysteme im OF
- Medizintechnische Sensorsysteme
- Medizintechnische Informationssysteme - Regulatorische Rahmenbedingungen
- Standards in der Medizintechnik

Durch problembasiertes Lernen erfolgt die Vertiefung der Methoden aus der Vorlesung. Dies erfolgt in Form von Gruppenarbeit.

Literatur:

Wird in der Veranstaltung bekannt gegeben.

Lehrveranstaltung: Einführung in Medizintechnische Systeme (Problemorientierte Lehrveranstaltung)

Dozenten:

Prof. Alexander Schlaefer

Sprachen:

DE

Zeitraum:

SS

Inhalt:

- Bildgebende Systeme
- Assistenzsysteme im OP
- Medizintechnische Sensorsysteme
- Medizintechnische Informationssysteme
 Regulatorische Rahmenbedingungen
- Standards in der Medizintechnik

Durch problembasiertes Lernen erfolgt die Vertiefung der Methoden aus der Vorlesung. Dies erfolgt in Form von Gruppenarbeit.

Literatur:

Wird in der Veranstaltung bekannt gegeben.

 Titel
 Typ
 SWS

 Algebraische Methoden in der Regelungstechnik
 Vorlesung
 2

 Algebraische Methoden in der Regelungstechnik
 Gruppenübung
 2

Modulverantwortlich:

Dr. Prashant Batra

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Mathe I-III (Reelle Analysis, Lineare Algebra,)

und entweder: Einführung in die Regelungstechnik (Beschreibung u. gewünschte Eigenschaften von Systemen,

Zeitbereich/Frequenzbereich)

oder: Diskrete Mathematik (Gruppen, Ringe, Ideale, Körper, Euklidscher Algorithmus)

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Studierende können

- Input-Output-Systeme polynomial beschreiben,
- Faktorisierungsansätze für Übertragungsfunktionen erklären,
- Stabilisierungsbedingungen für Systeme in coprimer stabiler Faktorisierung benennen.

Fertigkeiten:

Studierende sind in der Lage

- · eine Synthese stabiler Regelkreise durchzuführen,
- geeignete Analyse und Synthesemethoden zur Beschreibung aller stabilen Regelkreise anzuwenden sowie
- die Erfüllung vorgegebener Leistungsmaße sicher zu stellen.

Personale Kompetenzen:

Sozialkompetenz:

Selbstständigkeit:

Leistungspunkte: 6 LP

O L.

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

Computer Science: Vertiefung Computerorientierte Mathematik: Wahlpflicht

Elektrotechnik: Kernqualifikation: Wahlpflicht

Elektrotechnik myTrack: Kernqualifikation: Wahlpflicht

 $Informatik-Ingenieurwesen: Vertiefung\ Ingenieurwesen: Wahlpflicht$

Technomathematik: Kernqualifikation: Wahlpflicht

Lehrveranstaltung: Algebraische Methoden in der Regelungstechnik (Vorlesung)

Dozenten

Dr. Prashant Batra

Sprachen:

DE/EN

Zeitraum:

SS

Inhalt:

- $Algebra is che \ Methoden \ der \ Regelungstechniks, polynomialer \ Ansatz, \ Faktorisierungsbeschreibung$
- $Beschreibung \ 1-dimensionaler \ Regelsysteme, \ Synthese \ von \ (minimalen) \ Regelsystemen \ durch \ algebraische \ Interpolationsmethoden,$
- Simultane Stabilisierbarkeit
- Parametrisierung sämtlicher stabilisierenden Regler
- Reglerentwurf bei Polvorgabe
- Berücksichtigung von Systemeigenschaften: Störanfälligkeit, Sensitivität.
- Polynomiale Matrizen, Beschreibung durch Links-Faktorisierungen.
- Euklidscher Algorithmus u. Diophantische Gleichungen über Ringen
- Smith-McMillan Normal Form
- Synthese von Mehrgrößensystemen durch polynomiale Methoden

The MIT Press, Cambridge/Mass. - London, 1985.

Vardulakis, A.I.G.: Linear multivariable control. Algebraic analysis and synthesis methods, John Wiley & Sons, Chichester, UK, 1991.

Chen, Chi-Tsong: Analog and digital control system design. Transfer-function, state-space, and algebraic methods. Oxford Univ. Press, 1995.

Kučera, V.: Analysis and Design of Discrete Linear Control Systems. Praha: Academia, 1991.

Lehrveranstaltung: Algebraische Methoden in der Regelungstechnik (Übung)

Dozenten:

Dr. Prashant Batra

Sprachen:

DE/EN

Zeitraum:

SS

Inhalt:

- Algebraische Methoden der Regelungstechniks, polynomialer Ansatz, Faktorisierungsbeschreibung
- Beschreibung 1-dimensionaler Regelsysteme, Synthese von (minimalen) Regelsystemen durch algebraische Interpolationsmethoden,
- Simultane Stabilisierbarkeit
- Parametrisierung sämtlicher stabilisierenden Regler
- Reglerentwurf bei Polvorgabe
- Berücksichtigung von Systemeigenschaften: Störanfälligkeit, Sensitivität.
- Polynomiale Matrizen, Beschreibung durch Links-Faktorisierungen.
- Euklidscher Algorithmus u. Diophantische Gleichungen über Ringen
- Smith-McMillan Normal Form
- Synthese von Mehrgrößensystemen durch polynomiale Methoden

Literatur:

```
Vidyasagar, M.: Control system synthesis: a factorization approach.

The MIT Press, Cambridge/Mass. - London, 1985.

Vardulakis, A.I.G.: Linear multivariable control. Algebraic analysis and synthesis

methods, John Wiley & Sons, Chichester, UK, 1991.

Chen, Chi-Tsong: Analog and digital control system design. Transfer-function, state-space, and algebraic methods.

Oxford Univ. Press, 1995.
```

Kučera, V.: Analysis and Design of Discrete Linear Control Systems. Praha: Academia, 1991.

 Titel
 Typ
 SWS

 Löser für schwachbesetzte lineare Gleichungssysteme
 Vorlesung
 2

 Löser für schwachbesetzte lineare Gleichungssysteme
 Gruppenübung
 2

Modulverantwortlich:

Prof. Sabine Le Borne

Zulassungsvoraussetzung:

• Mathematik I + II für Ingenieurstudierende (deutsch oder englisch)

oder

• Analysis & Lineare Algebra I + II für Technomathematiker

Empfohlene Vorkenntnisse:

- Vorlesungsinhalte der Veranstaltungen der Zulassungsvoraussetzungen
- Programmierkenntnisse in C

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

Studierende können

- klassische und moderne Iterationsverfahren und deren Zusammenhänge untereinander benennen,
- · Konvergenzaussagen zu Iterationsverfahren wiedergeben,
- Aspekte der effizienten Implementierung von Iterationsverfahren erklären.

Fertigkeiten:

Studierende sind in der Lage,

- Iterationsverfahren zu implementieren, anzuwenden und zu vergleichen,
- das Konvergenzverhalten von Iterationverfahren zu analysieren und gegebenenfalls Konvergenzraten zu berechnen.

Personale Kompetenzen:

Sozialkompetenz:

Studierende können

 in heterogen zusammengesetzten Teams (d.h. aus unterschiedlichen Studiengängen und mit unterschiedlichem Hintergrundwissen) zusammenarbeiten, sich theoretische Grundlagen erklären sowie bei praktischen Implementierungsaspekten der Algorithmen unterstützen.

Selbstständigkeit:

Studierende sind fähig,

- selbst einzuschätzen, ob sie die begleitenden theoretischen und praktischen Übungsaufgaben besser allein oder im Team lösen,
- mit ausreichender Ausdauer komplexe Problemstellungen über längere Zeiträume zu bearbeiten,
- ihren Lernstand konkret zu beurteilen und gegebenenfalls gezielt Fragen zu stellen und Hilfe zu suchen.

Leistungspunkte:

6 LP

Studienleistung:

Mündliche Prüfung

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

 $Computer \ Science: \ Vertiefung \ Computer orientierte \ Mathematik: \ Wahlpflicht$

Elektrotechnik: Kernqualifikation: Wahlpflicht

Elektrotechnik myTrack: Kernqualifikation: Wahlpflicht

Informatik-Ingenieurwesen: Vertiefung Ingenieurwesen: Wahlpflicht

Technomathematik: Vertiefung Mathematik: Wahlpflicht

Lehrveranstaltung: Löser für schwachbesetzte lineare Gleichungssysteme (Vorlesung)

Dozenten:

Prof. Sabine Le Borne

Sprachen:

DE/EN

Zeitraum:

SS

Inhalt:

- 1. Schwachbesetzte Matrizen: Anordnungen und Speicherformate, direkte Löser
- 2. Klassische Iterationsverfahren: Grundbegriffe, Konvergenz
- 3. Projektionsverfahren
- 4. Krylovraumverfahren
- 5. Präkonditionierung (z.B ILU)
- 6. Mehrgitterverfahren

Literatur:

1. Y. Saad, Iterative methods for sparse linear systems

Lehrveranstaltung: Löser für schwachbesetzte lineare Gleichungssysteme (Übung)

Dozenten:

Prof. Sabine Le Borne

Sprachen:

DE/EN

Zeitraum:

SS

Inhalt:

- 1. Schwachbesetzte Matrizen: Anordnungen und Speicherformate, direkte Löser
- 2. Klassische Iterationsverfahren: Grundbegriffe, Konvergenz
- 3. Projektionsverfahren
- 4. Krylovraumverfahren
- 5. Präkonditionierung (z.B ILU)
- 6. Mehrgitterverfahren

Literatur:

1. Y. Saad, Iterative methods for sparse linear systems

TitelTypswsHalbleiterschaltungstechnikVorlesung3HalbleiterschaltungstechnikGruppenübung1

Modulverantwortlich:

Prof. Wolfgang Krautschneider

Zulassungsvoraussetzung:

keine

Empfohlene Vorkenntnisse:

Grundlagen der Elektrotechnik Elementare Grundlagen der Physik

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

- Studierende können die Funktionsweisen von verschiedenen MOS-Bauelementen in unterschiedlichen Schaltungen erklären.
- Studierende sind in der Lage, grundlegende digitale Logik-Schaltungen zu benennen und ihre Vor- und Nachteile zu diskutieren.
- Studierende können aktuelle Speichertypen benennen, deren Funktionsweise erklären und Kenngrößen angeben.
- Studierende können die Funktionsweise von Analogschaltungen und deren Anwendungen erklären.
- Studierende können geeignete Anwendungsbereiche von Bipolartransistoren benennen.

Fertigkeiten:

- Studierende können Kenngrößen von verschiedenen MOS-Bauelementen berechnen und Schaltungen dimensionieren.
- Studierende k\u00f6nnen logische Schaltungen mit unterschiedlichen Schaltungstypen entwerfen und dimensionieren.
- Studierende k\u00f6nnen MOS-Bauelemente und Operationsverst\u00e4rker sowie bipolare Transistoren in speziellen Anwendungsbereichen einsetzen.

Personale Kompetenzen:

Sozialkompetenz:

- Studierende sind in der Lage, in heterogen (aus unterschiedlichen Studiengängen) zusammengestellten Teams zusammenzuarbeiten.
- Studierende können in kleinen Gruppen Rechenaufgaben lösen und Fachfragen beantworten.

Selbstständigkeit:

• Studierende sind in der Lage, ihren eigenen Lernstand einzuschätzen.

Leistungspunkte:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 124, Präsenzstudium: 56

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht

Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht

Computer Science: Vertiefung Technische Informatik: Wahlpflicht

Elektrotechnik: Kernqualifikation: Pflicht

Elektrotechnik myTrack: Kernqualifikation: Pflicht

General Engineering Science: Vertiefung Elektrotechnik: Pflicht

General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht

Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht

Maschinenbau: Vertiefung Mechatronik: Pflicht Mechatronik: Kernqualifikation: Pflicht

Technomathematik: Kernqualifikation: Wahlpflicht

Lehrveranstaltung: Halbleiterschaltungstechnik (Vorlesung)

Dozenten:

Prof. Wolfgang Krautschneider

Sprachen:

DF

Zeitraum:

55

Inhalt:

Inhalt:

- Grundschaltungen mit MOS-Transistoren für Logikgatter und Verstärker
- Typische Anwendungsfälle in der digitalen und analogen Schaltungstechnik
- Realisierung logischer Funktionen
- Schaltungen für die Speicherung von binären Daten
- Strukturverkleinerung von CMOS-Schaltkreisen und weitere Leistungssteigerung
- Operationsverstärker und ihre Anwendungen
- Grundschaltungen mit bipolaren Transistoren
- Dimensionierung beispielhafter Schaltungen
- Elektrisches Verhalten von BICMOS-Schaltungen

Literatur:

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H.-G. Wagemann und T. Schönauer, Silizium-Planartechnologie, Grundprozesse, Physik und Bauelemente, Teubner-Verlag, 2003, ISBN 3519004674

K. Hoffmann, Systemintegration, Oldenbourg-Verlag, 2. Aufl. 2006, ISBN: 3486578944

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN:

9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo

Lehrveranstaltung: Halbleiterschaltungstechnik (Übung)

Dozenten:

Prof. Wolfgang Krautschneider

Sprachen:

DE

Zeitraum:

SS

Inhalt:

Inhalt:

- Grundschaltungen mit MOS-Transistoren für Logikgatter und Verstärker
- Typische Anwendungsfälle in der digitalen und analogen Schaltungstechnik
- Realisierung logischer Funktionen
- Schaltungen f
 ür die Speicherung von bin
 ären Daten
- Strukturverkleinerung von CMOS-Schaltkreisen und weitere Leistungssteigerung
- Operationsverstärker und ihre Anwendungen
- Grundschaltungen mit bipolaren Transistoren
- Dimensionierung beispielhafter Schaltungen
- Elektrisches Verhalten von BICMOS-Schaltungen

Literatur:

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H.-G. Wagemann und T. Schönauer, Silizium-Planartechnologie, Grundprozesse, Physik und Bauelemente, Teubner-Verlag, 2003, ISBN 3519004674

K. Hoffmann, Systemintegration, Oldenbourg-Verlag, 2. Aufl. 2006, ISBN: 3486578944

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo

Thesis

Modul: Bachelorarbeit

Lehrveranstaltungen:

Titel Typ SWS

Modulverantwortlich:

Professoren der TUHH

Zulassungsvoraussetzung:

Empfohlene Vorkenntnisse:

Modulziele/ angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht:

Fachkompetenz:

Wissen:

- Studierende können die wichtigsten wissenschaftlichen Grundlagen ihres Studienfaches (Fakten, Theorien und Methoden) problembezogen auswählen, darstellen und nötigenfalls kritisch diskutieren.
- Die Studierenden können ausgehend von ihrem fachlichen Grundlagenwissen anlassbezogen auch weiterführendes fachliches Wissen erschließen und verknüpfen.
- Die Studierenden können zu einem ausgewählten Thema ihres Faches einen Forschungsstand darstellen.

Fertigkeiten:

- Die Studierenden k\u00f6nnen das im Studium vermittelte Grundwissen ihres Studienfaches zielgerichtet zur L\u00f6sung fachlicher Probleme einsetzen
- Die Studierenden k\u00f6nnen mit Hilfe der im Studium erlernten Methoden Fragestellungen analysieren, fachliche Sachverhalte entscheiden und L\u00f6sungen entwickeln.
- Die Studierenden können zu den Ergebnissen ihrer eigenen Forschungsarbeit kritisch aus einer Fachperspektive Stellung beziehen.

Personale Kompetenzen:

Sozialkompetenz:

- Studierende können eine wissenschaftliche Fragestellung für ein Fachpublikum sowohl schriftlich als auch mündlich strukturiert, verständlich und sachlich richtig darstellen.
- Studierende können in einer Fachdiskussion auf Fragen eingehen und sie in adressatengerechter Weise beantworten. Sie können dabei eigene Einschätzungen und Standpunkte überzeugend vertreten.

Selbstständigkeit:

- Studierende k\u00f6nnen einen umfangreichen Arbeitsprozess zeitlich strukturieren und eine Fragestellung in vorgegebener Frist bearbeiten.
- Studierende k\u00f6nnen notwendiges Wissen und Material zur Bearbeitung eines wissenschaftlichen Problems identifizieren, erschlie\u00dfen und verkn\u00fcpfen.
- Studierende können die wesentlichen Techniken des wissenschaftlichen Arbeitens in einer eigenen Forschungsarbeit anwenden.

Leistungspunkte:

12 LP

Studienleistung:

It. FSPO

Arbeitsaufwand in Stunden:

Eigenstudium: 360, Präsenzstudium: 0

Zuordnung zu folgenden Curricula:

Allgemeine Ingenieurwissenschaften: Abschlussarbeit: Pflicht Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht

Bioverfahrenstechnik: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht

Elektrotechnik myTrack: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht General Engineering Science: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Logistik und Mobilität: Abschlussarbeit: Pflicht

Maschinenbau: Abschlussarbeit: Pflicht Mechatronik: Abschlussarbeit: Pflicht Schiffbau: Abschlussarbeit: Pflicht

Technomathematik: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht