Materials Science Colloquium of the SFB 986

Public Talk – All students, staff and interested people are warmly invited!

Prof. Tianquan Lian
Department of Chemistry
Emory University
Atlanta, USA

17.04.2019, 17:15h
H0.09, Am Schwarzenberg-Campus 5, TUHH
Some snacks and drinks will be served from 17:00 onwards

Efficient Plasmon Induced Hot Electron Transfer

It has been well-established that excitation of plasmons in metal nanostructures can lead to the injection of hot electrons and holes into semiconductors or adsorbed molecules to drive photocatalysis. Therefore plasmonic hot carriers can access highly energetic and reactive states of metals that is difficult to access with thermal chemistry. However, plasmon-induced hot electron transfer are often inefficient because of unfavorable initial hot electron distribution and the competing ultrafast hot electron relaxation processes within the metallic domain.

In this talk, we discuss two approaches to enhance the efficiency of plasmon induced hot electron transfer. In the first approach, we explore the possibility of enhancing hot electron distribution by decreasing the size of plasmonic Au particles. Using CdS/Au nanorod heterostructures, we show that the hot electron injection efficiency increases at smaller Au particle size. We attribute this size dependence to increasing contribution of surface assisted plasmon damping, which generates more hot electrons compared to damping by interband transition. In the second approach, we demonstrate that in CdSe/Au hetersostructureswith strong metal/semiconductor coupling, the plasmon decays by direct excitation of an electron from the metal to semiconductor, i.e. plasmon induced interfacial charge transfer transition (PICTT). The new plasmon damping pathway can be very efficient because it bypasses the competition with hot electron relaxation within the metal satisfies both the energy and momentum conservation. We will discuss whether PICTT can be a general scheme for efficient hot electron transfer.