Zur Ermittlung von Flatterderivativa aus Versuchen und mittels numerischer Strömungsmechanik

Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieurin genehmigte Dissertation

von

Lydia Thiesemann

aus

Hannover

2008
1. Gutachter Prof. Dr.-Ing Uwe Starossek
2. Gutachter Prof. Dr.-Ing. Thomas Rung

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation 1
1.2 Ziel dieser Arbeit 3
1.3 Methodik 3

2 Windeinwirkung auf Brücken 9
2.1 Der Wind 9
2.2 Stationäre und instationäre Luftkräfte 10
2.3 Luftkräfte am ruhenden Profil 10
2.4 Luftkräfte am bewegten Profil 12
2.5 Einflußfaktoren für Luftkräfte 14
2.6 Windbelastung und Bemessungsanforderungen an das aerodynamische Design 16
2.7 Gebräuchliche Querschnittsformen des Brückenhauptträgers von weitgespannten Brückenbauwerken 16
2.7.1 Fachwerkträger 17
2.7.2 Trapezähnliche Vollquerschnitte 18
2.7.3 Mehrteilige Brückenquerschnitte 19

3 Beschreibung bewegungsinduzierter Luftkräfte 20
3.1 Einleitung 20
3.2 Theoretische Berechnung der bewegungsinduzierten Luftkräfte 21
3.2.1 Einführung 21
3.2.2	Strömungskräfte nach Potentialtheorie	21
3.2.3	Der Einfluss der Brückenbewegung auf die Strömung	23
3.2.4	Luftkräfte nach Theodorsen	25
3.2.5	Anwendbarkeit der theoretisch ermittelten Luftkräfte nach Theodorsen im Brückenbau	29
3.2.6	Kriterien für Plattenähnlichkeit	30
3.3	Erweiterung der klassischen Flattertheorie um die laterale Bewegung	30
3.4	Reelle Darstellung der Flatterderivativa	31
3.5	Weitere alternative Darstellungen der Flatterderivativa	33
3.6	Vergleich der vorgestellten Darstellungen	34

4 Die Berechnung der kritischen Windgeschwindigkeit im Frequenzbereich 36
 4.1 Modellierung der Brückenstruktur 36
 4.2 Die zweidimensionale Bewegungsgleichung unter Einbeziehung der Luftkräfte 40
 4.3 Der aerothermisch stabile Grenzzustand 41
 4.4 Aerodynamische Dämpfung 41
 4.5 Die Ermittlung der kritischen Windgeschwindigkeit 43
 4.6 Torsionsflattern 46
 4.7 Galloping 48
 4.8 Erweiterungen der klassischen zweidimensionalen Flattertheorie 49
 4.9 Näherungsberechnung der Flattergeschwindigkeit nach Selberg 49
 4.10 Die Berechnung der Eigenvektoren 50

5 Modellierung bewegungsinduzierter Schwingungen im Zeitbereich 52
 5.1 Stand der Forschung 52
 5.2 Grundlagen 53
 5.3 Berechnung der charakteristischen Übergangsfunktionen aus den Flatterderivativa für beliebige Querschnitte 57
6 Grundlagen der Modellähnlichkeit bei numerischer Simulation und Versuch 60
 6.1 Einleitung .. 60
 6.2 Geometrische und dynamische Ähnlichkeit 61
 6.3 Vergleichbarkeit von Gasströmungen und Wasserströmungen 63

7 Die Modellierung von Luftkräften mittels numerischer Strömungsmechanik 65
 7.1 Stand der Forschung 65
 7.2 Strömungsmechanische Grundlagen 67
 7.2.1 Einführung 67
 7.3 Die NAVIER-STOKES-Gleichungen 69
 7.4 Die Modellierung der Bewegung des Brückenquerschnittes 70
 7.5 Turbulenzmodellierung 71
 7.5.1 Laminare und turbulente Strömung 71
 7.5.2 Modellierung 73
 7.5.3 Das k-ϵ-Modell 75
 7.6 Simulationen mit Comet 78
 7.7 Die Güteeigenschaften einer numerischen Berechnung 78
 7.8 Diskretisierung 80
 7.8.1 Grundlagen 80
 7.8.2 A posteriori-Netzverfeinerung 81
 7.9 Die Finite-Volumen-Methode 82
 7.9.1 Einführung 82
 7.9.2 Interpolationsverfahren 83
 7.9.3 Zeitintegration 84
 7.10 Anfangsbedingungen 86
 7.11 Randbedingungen 86
 7.12 Auswertung der numerischen Ergebnisse 90
 7.12.1 Grundlagen der Auswertung 90
9.5.2 Einfluss der Bewegungsamplitude am Beispiel des Profils R4 135
9.5.3 Vergleich der Flatterderivativa für den Querschnitt R anhand des Versuchs nach der Methode der freien gekoppelten Schwingungen 136
9.5.4 Rechteck mit Mittelsteg 138
9.6 Sonstige Querschnitte 139
 9.6.1 II-Querschnitte 139
 9.6.2 Der Querschnitt der Tacoma Brücke 141
 9.6.3 Offene Querschnitte 145
9.7 Zur aerodynamischen Dämpfung 146
9.8 Simulation abklingender Schwingungen 147
9.9 Zeitbereichssimulation auf Basis numerischer Flatterderivativa 147
9.10 Bewegungsinduzierte Kräfte in Strömungsrichtung 151
9.11 Der Einfluß des effektiven Anstellwinkels 153
10 Wirbelinduzierte Schwingungen 158
 10.1 Stand der Forschung 158
 10.2 Zur Wechselwirkung von Bewegungsfrequenz und Wirbelresonanzfrequenz 161
11 Numerische Berechnung der stationären Luftkraftbeiwerte 166
12 Zusammenfassung und Ausblick 170
A Untersuchte Profile 189
 A.1 Erläuterung 189
 A.2 Übersicht 192
 A.3 Profil GB 193
 A.4 Profil B2 195
 A.5 Profil B3 197
 A.6 Profil B4 199
 A.7 Profil B5 201
NOTATION

B Parameter der Jones-Approximation der experimentellen Flatterderivativa 255
B.1 Profil GB ... 255
B.2 Profil S ... 256
B.3 Profil M ... 256
B.4 Profil P ... 256
B.5 Profil B8 ... 256
B.6 Profil R ... 257
B.7 Profil C ... 257
B.8 Profil TC ... 257
B.9 Profil C ... 257

C Vergleich von experimentell und numerisch ermittelten Flatterderivativa anhand der resultierenden kritischen Windgeschwindigkeit bei variabler Frequenzverhältnis ε 258

D Das Prediktor-Korrektor-Verfahren in Anwendung auf die Zeitbereichsintegration 263

E Flatterderivativa nach Theodorsen in numerischer Form 266

F Struktureigenschaften von Brücken und Experimenten 267

G Umrechnung von komplexer in reelle Darstellung 269
Notation

α Rotationsbewegung (Verdrehung um die Längsachse), s. Gl. (3.5), S. 23

$\alpha(x,t)$ Rotationsschwingung der Gesamtbrücke um die Längsachse, s. Gl. (4.3), S. 36

α_e effektiver Anstellwinkel, s. Gl. (9.3), S. 154

α_G Rauhigkeitsparameter des Geländetopografie, S. 9

χ Verhältnis der Frequenz im Flatterfall zur Torsionseigenfrequenz der Struktur, S. 50

δ logarithmisches Dämpfungsmaß, s. Gl. (4.18), S. 42

δ_L Dicke der laminaren Grenzschicht, s. Gl. (7.28), S. 81

δ_T Dicke der turbulenten Grenzschicht, s. Gl. (7.29), S. 82

ϵ Dissipationsrate (Kapitel 7), s. Gl. (7.24), S. 76

Γ Zirkulation, s. Gl. (3.4), S. 22

$\hat{\alpha}$ Rotationsamplitude, s. Gl. (3.7), S. 24

\hat{x} Amplitudenvektor, s. Gl. (3.7), S. 24

\hat{h} Vertikalamplitude, s. Gl. (3.7), S. 24

λ_i Ähnlichkeitskennzahlen, S. 61

$\lambda_j(k)$ $j=1,2$ frequenzabhängige Lösung des Eigenwertproblems, s. Gl. (4.37), S. 45

f_{LA} turbulenzinduzierter Anteil des dyn. Luftkraftvektors, s. Gl. (2.8), S. 12

f_{LM} bewegungsinduzierter Anteil des dyn. Luftkraftvektors, s. Gl. (2.8), S. 12

f_{LS} wirbelinduzierter Anteil des dyn. Luftkraftvektors, s. Gl. (2.8), S. 12

f_{LS} Vektor der stationären Luftkräfte, s. Gl. (2.7), S. 12

K^d komplexe Feder-Dämpfungsmatrix, s. Gl. (2.7), S. 12
\(f_{ld} \) Vektor der dynamischen Luftkräfte, s. Gl. (2.7), S. 12
\(\mathbf{x} \) Bewegungsvektor, s. Gl. (2.7), S. 12
\(\bar{x} \) Beschleunigungsvektor, s. Gl. (3.7), S. 24
\(\dot{x} \) Geschwindigkeitsvektor, s. Gl. (3.7), S. 24
\(\mathbf{A} \) aeroelastische Gesamtmatrix, s. Gl. (4.31), S. 44
\(\mathbf{C}_{ae} \) aeroelastische Gesamtdämpfungsmatrix, s. Gl. (4.27), S. 43
\(\mathbf{D} \) dynamische Systemmatrix, s. Gl. (4.11), S. 38
\(\mathbf{D}_d \) Deformationstensor, s. Gl. (7.13), S. 70
\(\mathbf{F}_L \) Luftkraftvektor, s. Gl. (3.16), S. 26
\(\mathbf{f} \) Kräfte, s. Gl. (6.3), S. 61
\(\mathbf{I} \) Einheitsmatrix, s. Gl. (4.11), S. 38
\(\mathbf{K}_{ae} \) aeroelastische Gesamtsteifigkeitsmatrix, s. Gl. (4.26), S. 43
\(\mathbf{M}_{ae} \) aeroelastische Gesamtmassenmatrix, s. Gl. (4.25), S. 43
\(\mathbf{M} \) Massenmatrix, s. Gl. (2.7), S. 12
\(\mathbf{M} \) Massenmatrix, s. Gl. (4.9), S. 37
\(\mathbf{T} \) Cauchy-Spannungstensor, s. Gl. (7.10), S. 69
\(\mathbf{v}_n \) Geschwindigkeit des natürlichen Windes, s. Gl. (2.1), S. 10
\(\mathbf{v}(t) \) Geschwindigkeitsvektor, s. Gl. (7.3), S. 68
\(\mathbf{v}_b \) Bewegungsgeschwindigkeit des Berechnungsgebiets, s. Gl. (7.17), S. 71
\(\mathbf{x} \) Eigenvektor der Flatterschwingung im kritischen Fall, s. Gl. (4.48), S. 51
\(\mu \) Viskosität des Fluids, s. Gl. (7.11), S. 69
\(\mu_m \) bezogene Masse, S. 39
\(\mu_t \) Wirbelviskosität, s. Gl. (7.25), S. 76
\(\nu \) kinematische Zähigkeit, s. Gl. (6.5), S. 62
\(\Omega \) beliebiger Raum, S. 67
\(\omega \) Eigenkreisfrequenz, s. Gl. (3.6), S. 24
\(\omega_{krit} \) Frequenz der Biege-Torsionsschwingung im Flatterfall, s. Gl. (4.38), S. 45
ρ Dichte, s. Gl. (2.4), S. 11
θ Massenträgheitsmoment, auf eine Längeneinheit bezogen, s. Gl. (4.9), S. 37
θ" generalisiertes Massenträgheitsmoment bez. auf die Brückenlängsrichtung, s. Gl. (4.7), S. 37
ζ Frequenzverhältnis, s. Gl. (4.12), S. 39
ξ Lehrsches Dämpfungsmaß, s. Gl. (4.17), S. 42
ξa Eigenform der Rotationsschwingung, s. Gl. (4.3), S. 36
ξa,j j = h, α, aerodynamische Dämpfungskoeffizienten, s. Gl. (4.30), S. 43
ξa Eigenform der Vertikalschwingung, s. Gl. (4.3), S. 36
ξw Eigenform der Horizontalschwingung, s. Gl. (4.3), S. 36
ζ bezogene kritische Geschwindigkeit (4.15), s. Gl. (4.15), S. 41
A Auftriebskraft, s. Gl. (3.16), S. 26
Ai Auftriebskraft resultierend aus der Bewegung i mit i = w, h, α, s. Gl. (7.49), S. 91
ai komplexe Koeffizienten des charakteristischen Polynoms, i = 0, 1, s. Gl. (4.32), S. 44
Ai* Flatterderivativa für das Luftkraftmoment nach SCANLAN-Notation, s. Gl. (3.29), S. 32
ANZ nichtzirkulatorischer Anteil der dynamischen Auftriebskraft, s. Gl. (3.2), S. 21
AZ zirkulatorischer Anteil der dynamischen Auftriebskraft, s. Gl. (3.2), S. 21
B Querschnittsbreite, s. Gl. (2.2), S. 11
b halbe Querschnittsbreite, s. Gl. (3.4), S. 23
c Schallgeschwindigkeit, s. Gl. (6.15), S. 64
C(k) Zirkulationsfunktion nach THEODORSEN, s. Gl. (3.21), S. 28
cA Auftriebsbeiwert, s. Gl. (2.3), S. 11
cD Widerstandsbeiwert, s. Gl. (2.2), S. 11
cF Quertriebskraft, s. Gl. (4.46), S. 48
cM Momentenbeiwert, s. Gl. (2.4), S. 11
c_{D0} Widerstandsbeiwert bei $\alpha = 0$, s. Gl. (3.39), S. 34

c_{ij} $i, j = w, h, \alpha$, Flatterderivativa, s. Gl. (3.20), S. 26

D Widerstandskraft, s. Gl. (3.30), S. 32

Fr Froudezahl, s. Gl. (6.12), S. 62

g Erdbeschleunigung, s. Gl. (6.12), S. 62

g_0 Dämpfungsverlustwinkel, $i = w, h, \alpha$, s. Gl. (4.10), S. 38

H Querschnittshöhe, S. 11

h Vertikalbewegung, s. Gl. (3.5), S. 23

$h(x, t)$ vertikale Schwingung der Gesamtbrücke, s. Gl. (4.3), S. 36

H_1 Hankelfunktionen, s. Gl. (3.21), S. 28

H_1^* Flatterderivativa für die Auftriebskraft nach SCANLAN-Notation, s. Gl. (3.29), S. 32

K reduzierte Frequenz bezogen auf die Gesamtbreite B, s. Gl. (3.29), S. 32

k kinetische Energie (Kapitel 7), s. Gl. (7.23), S. 76

k reduzierte Frequenz, s. Gl. (3.9), S. 24

K_α Rotationssteifigkeit, s. Gl. (4.10), S. 38

K_h Vertikalsteifigkeit, s. Gl. (4.10), S. 38

K_{A0} Steigung des stationären Auftriebsbeiwertes bei $\alpha = 0$, s. Gl. (3.39), S. 34

K_{A0} Steigung des stationären Momentenbeiwertes bei $\alpha = 0$, s. Gl. (3.39), S. 34

L Länge eines Brückenabschnitts in Längsrichtung, s. Gl. (2.2), S. 11

L_w Wellenlänge, S. 24

L_1 im vorderen Viertelpunkt des Profils angreifende Auftriebskraft, s. Gl. (3.15), S. 25

L_2 im Mittelpunkt des Profils angreifende Auftriebskraft, s. Gl. (3.15), S. 25

L_3 im hinteren Viertelpunkt des Profils angreifende Auftriebskraft, s. Gl. (3.15), S. 25

L_4 im Mittelpunkt des Profils angreifendes Luftkraftmoment, s. Gl. (3.15), S. 25

L_{ij} Flatterderivativa nach japanischer Notation mit $i = z, \theta$ und $j = R, I$, s. Gl. (3.37), S. 33
\(m \) Masse pro Längeneinheit, s. Gl. (4.9), S. 37
\(m(x) \) Massenverteilung über die Länge der Brücke, s. Gl. (4.7), S. 37
\(m^* \) generalisierte Masse, s. Gl. (4.7), S. 37
\(M_i \) Luftkraftmoment resultierend aus der Bewegung \(i \) mit \(i = w, h, \alpha \), s. Gl. (7.50), S. 91
\(M_L \) Luftkraftmoment, s. Gl. (3.16), S. 26
\(M_{LNZ} \) nichtzirkulatorischer Anteil des Luftkraftmomentes, s. Gl. (3.2), S. 21
\(M_{LZ} \) zirkulatorischer Anteil des Luftkraftmomentes, s. Gl. (3.2), S. 21
\(M_a \) Machzahl, s. Gl. (6.15), S. 64
\(n \) Eigenfrequenz [Hz], s. Gl. (3.35), S. 33
\(p \) Druck, s. Gl. (6.5), S. 62
\(P_i^* \) Flatterderivativa der Widerstandskraft, s. Gl. (3.30), S. 32
\(q \) Staudruck, S. 11
\(q_0 \) Staudruck, s. Gl. (3.16), S. 26
\(r \) bezogener Trägheitsradius, S. 39
\(Re \) Reynoldszahl, s. Gl. (6.13), S. 62
\(S \) Gebietsrand, s. Gl. (7.9), S. 69
\(s \) dimensionslose Zeitvariable, s. Gl. (3.10), S. 25
\(s_d \) mittlere Größe der mittlere Größe der Luftkraftamplitude in der Wirbelablösefrequenz, s. Gl. (2.6), S. 12
\(t \) Zeitvariable, s. Gl. (3.6), S. 24
\(u(t) \) turbulente Schwankung der Geschwindigkeit in Hauptwindrichtung, s. Gl. (2.1), S. 10
\(u_\infty \) Anströmgeschwindigkeit, s. Gl. (2.4), S. 11
\(u_G \) Geschwindigkeit oberhalb des horizontalen Geschwindigkeitsprofils der atmosphärischen Grenzschicht, S. 9
\(U_{red} \) reduzierte Geschwindigkeit, s. Gl. (3.35), S. 33
\(v(t) \) turbulente Schwankung der Geschwindigkeit quer zur Hauptwindrichtung, s. Gl. (2.1), S. 10
w Bewegung in Strömungsrichtung, s. Gl. (3.30), S. 32

$w(t)$ turbulente Schwankung der Geschwindigkeit senkrecht zur Hauptwindrichtung, s. Gl. (2.1), S. 10

$w(x, t)$ horizontale Schwingung der Gesamtbrücke, s. Gl. (4.3), S. 36

z_G Höhe des horizontalen Geschwindigkeitsprofils der atmosphärischen Grenzschicht, S. 9

n_B Einheitsvektor senkrecht auf den Abflußrand, s. Gl. (7.36), S. 87

n_S Richtung senkrecht auf den Abflußrand, s. Gl. (7.36), S. 87

n Oberflächenvektor, S. 90
Kapitel 1

Einleitung

1.1 Motivation

In ihrer Wirkungsweise werden Windlasten in statische und dynamische Windlasten eingeteilt. Zum Nachweis der Standsicherheit einer Brücke ist zu überprüfen, ob die Brücke diesen statischen und dynamischen Belastungen aus Wind standhält.

Der Auslöser der rasanten Entwicklung des Verständnisses des aeroelastischen Verhaltens von Brücken mit großen Spannweiten ist ein katastrophales Ereignis: Am 7. November 1940, knapp fünf Monate nach ihrer Eröffnung, stürzte die Tacoma Narrows Bridge ein, nachdem die über Monate beobachteten vertikalen Schwingungen plötzlich in heftige Torsionsschwingungen übergegangen waren. Die mit 853 m Hauptfeldspannweite zu ihrer Zeit dritt längste Brücke der Welt verband die Halb-

Irrtümlich wurden in frühen Untersuchungen durch Wirbelablösungen bedingte Resonanzen für den Einsturz der Tacoma Brücke verantwortlich gemacht. Dieser Irrtum hat sich bis in die heutige Zeit in einigen Lehrbüchern gehalten, siehe hierfür die Diskussion von Billah und Scanlan [9]. In Wirklichkeit führte die aeroelastische Instabilität der Brücke zum Einsturz.

Da die Neigung eines Querschnittes zu klassischem Flattern und Torsionsflattern ein wichtiger Faktor bei der Wahl der Profilform eines Brückenquerschnittes ist, stehen diese aeroelastischen Phänomene im Mittelpunkt dieser Arbeit.
1.2 Ziel dieser Arbeit

Ziel dieser Arbeit war es, ein Verfahren zur numerischen Ermittlung von bewegungsinduzierten Luftkräften auf Basis numerischer Strömungsmechanik zu entwickeln und die Anwendbarkeit der Methode an Beispielen zu testen und im Vergleich mit geeigneten Versuchen zu verifizieren.

Bei der Entwicklung des numerischen Modells wurde großer Wert auf die Robustheit gelegt. Das heißt, dessen numerische Parameter wurden nicht nur lediglich an die jeweiligen Versuchsergebnisse angepasst: Alle Simulationen wurden mit einem festen numerischen Parametersatz durchgeführt (siehe Abschnitt 7.6), welcher sich gleichwohl für alle möglichen Brückenquerschnitte bei mäßigem Turbulenzgrad in Anströmrichtung eignet und somit auch als Vorhersageinstrument und zur Unterstützung von Windkanalversuchen verwendet werden kann.

1.3 Methodik

Abbildung 1.1: Aeroelastisches Dreieck
Aerodynamik das Verständnis der dynamischen, strukturmechanischen und aerodynamischen Zusammenhänge notwendig.

Durch eine Bewegung des Brückenprofils unter Windeinwirkung entstehen zeitabhängige Reaktionskräfte im umgebenden Fluid, der Luft. Diejenigen dynamischen Luftkräfte, die durch eine harmonische Bewegung konstanter Amplitude hervorgerufen werden, sind in ihrer dimensionslosen Form im Folgenden als Flatterderivativa bezeichnet.

Die kritische Windgeschwindigkeit ist diejenige Windgeschwindigkeit, oberhalb der ein Brückenhauptträger durch Flattern gefährdet ist. Eine Brücke ist als aerodynamisch stabil anzusehen, wenn die kritische Windgeschwindigkeit deutlich größer ist als die dem Brückenentwurf zugrundeliegende Bemessungswindgeschwindigkeit. Der Stabilitätsschluss erfordert daher die Bestimmung der kritischen Windgeschwindigkeit.
Für die Ermittlung der kritischen Windgeschwindigkeit wurden in den letzten sechs Jahrzehnten Berechnungsverfahren unterschiedlichster Komplexität entwickelt. Abgesehen von der einfachen SHELBERG-Formel [95], die lediglich auf Strukturparametern beruht, greifen die meisten Verfahren auf die funktionalen Verläufe der Flatterderivativa zurück. Deshalb kommt der Ermittlung der Flatterderivativa zum Zwecke des Nachweises der Flatterstabilität eine zentrale Bedeutung zu.

Brücke und Luft bilden energetisch betrachtet ein Gesamtsystem. Grundsätzlich gibt es zwei verschiedene Vorgehensweisen zur Behandlung des Zusammenspiels zwischen Brücke (Struktur) und Luft (Fluid):

Die Modellierung des Brückentragwerks erfolgt im Rahmen dieser Arbeit nur durch vereinfachte Modelle. Diese werden in Abschnitt 4.1 und folgend beschrieben.

Nachweis A:

Wind -> Aerodynamik
 -> Analytische Lösung [1] -> kritische Windgeschwindigkeit einer unendlich dünnen Platte, rein rechnerischer Nachweis
 -> Numerische Lösung, z.B. FEM

Nachweis B:

Wind -> Aerodynamik
 -> Windkanalversuche -> kritische Windgeschwindigkeit beliebiger Querschnitte, experimentell-numerischer Nachweis
 -> Numerische Lösung, z.B. FEM

Nachweis C:

Wind -> Aerodynamik
 -> CFD -> kritische Windgeschwindigkeit beliebiger Querschnitte, rein rechnerischer Nachweis
 -> Numerische Lösung, z.B. FEM

Abbildung 1.3: Unterschiedliche Nachweisverfahren
Einleitung

In jüngster Zeit bietet sich durch die Entwicklung der Computertechnik ein neues Werkzeug zur Berechnung von Flatterderivata an: Die numerische Strömungsmechanik. In der numerischen Strömungsmechanik werden aus der Beobachtung von physikalischen Vorgängen, entweder in der Wirklichkeit oder im Experiment, mathematische Gleichungen aufgestellt, die die beobachteten Phänomene beschreiben. Strömungen lassen sich vollständig mit den NAVIER-STOKES-Gleichungen beschreiben, siehe hierfür auch Kapitel 7. Sie gelten für die beiden Fluides Gas und Flüssigkeit gleichermassen. In dieser Arbeit wird ein auf der numerischen Strömungsmechanik basierendes Verfahren (Verfahren C, Abbildung 1.3) zur rein numerischen Ermitt-
Kapitel 2

Windeinwirkung auf Brücken

2.1 Der Wind

Charakteristisch für den natürlichen Wind ist eine unidirektionale Grundgeschwindigkeit, welche von zeitabhängigen, dreidimensionalen Schwankungen überlagert wird:

$$\mathbf{v}_o = \begin{pmatrix} u_o \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix}$$ \hspace{1cm} (2.1)

\(u_\infty \) ist die mittlere Anströmgeschwindigkeit in Hauptwindrichtung. Wird diese Windrichtung als Hauptachse des Bezugssystems gewählt, schwankt die Windgeschwindigkeit in Anstromrichtung um den Mittelwert \(u_\infty \), während die laterale und die vertikale Windgeschwindigkeit mittelwertfrei sind.

Üblicherweise wird die Grundgeschwindigkeit des Windes als 10-min-Mittelwert einer Windmessung gewonnen. Zusätzlich wird für die Erfassung der Boenwirkung ein dynamischer Mittelwert aus Zeitintervallen unter einer Minute gewonnen, welcher deutlich höher als der stationäre Mittelwert ist.

Abbildung 2.1: Zur Definition der mittleren Windgeschwindigkeit

2.2 Stationäre und instationäre Luftkräfte

Als stationäre Luftkräfte werden im Folgenden diejenigen Luftkräfte bezeichnet, die am ruhenden oder bewegten Brückenprofil durch zeitliche Mittelung nicht verschwinden. Im Rahmen dieser Arbeit werden die stationären Luftkräfte durch zeitliche Mittelung der instationären Luftkräfte am ruhenden Profil experimentell und numerisch bestimmt.

Als instationäre Luftkräfte werden im Folgenden alle Kräfte bezeichnet, die am schwingenden und ruhenden Profil zeitlich veränderlich sind und durch Mittelwertbildung verschwinden. Instationäre Kräfte sind nach dieser Definition mittelwertfrei.

2.3 Luftkräfte am ruhenden Profil

Die Luftkräfte am ruhenden Profil sind keineswegs stationär, sondern durch harmonische Wurzelablösungen und zeitabhängige Schwankungen der Windgeschwindigkeit.
einschließlich Instationarität. Durch Mittelwertbildung verschwinden diese Schwankungen.

Es ist üblich, die stationären Luftkräfte in dimensionsloser Form, den sogenannten Luftkraftbeiwerten, darzustellen. Dies erlaubt die Übertragbarkeit auf andere Maßstäbe (siehe hierzu auch Abschnitt 6.1):

\[
Widerstandsbeiwert : \quad c_D = \frac{D(t)}{\frac{1}{2} \rho u_\infty^2 BL} \tag{2.2}
\]

\[
Auftriebsbeiwert : \quad c_A = \frac{A(t)}{\frac{1}{2} \rho u_\infty^2 BL} \tag{2.3}
\]

\[
Momentenbeiwert : \quad c_M = \frac{M(t)}{\frac{1}{2} \rho u_\infty^2 B^2 L} \tag{2.4}
\]

Dabei bezeichnet \(L \) die Abschnittslänge des Brückenprofils in Brückenlängsrichtung, in dieser Arbeit stets als Einheitslänge gewählt. Der Nenner entspricht dem Staudruck \(q = \frac{1}{2} \rho u_\infty^2 \) multipliziert mit der projizierten Fläche quer zur Strömungsrichtung \(BL \), bzw. für den Momentenbeiwert \(B^2 L \). Der Staudruck kann mit Hilfe der Bernoulli-Gleichung hergeleitet werden, siehe hierfür z.B. Sockel [100]. \(\rho \) ist die Luftdichte. Der Staudruck ist der Druck im Staupunkt an der Profilvorderkante. Im Bauwesen hat sich vor allem für den Widerstandsbeiwert eingebürgert, anstatt der Breite \(B \) die Querschnittshöhe \(H \) als Bezugswert zu wählen. In dieser Arbeit jedoch sind einheitlich alle Kraftbeiwerte, wie in der Luft- und Raumfahrt üblich, auf die Breite \(B \) bezogen.

Zur Beschreibung der Instationarität der Luftkraftbeiwerte sind die folgenden dimensionslosen Parameter gebräuchlich:

- Die dominante Wirbelablösefrequenz wird durch die Strouhalzahl beschrieben.

\[
St = \frac{f H}{u_\infty} \tag{2.5}
\]

\(f \) ist die Wirbelablösefrequenz.

- Die Standardabweichung \(s_d \) [14] definiert die mittlere Größe der Luftkraftamplitude, die sich bei ruhendem Profil in der Wirbelablösefrequenz einstellt, hier einmal dargestellt für die Auftriebskraft \(A(t) \):

\[
s_d = \frac{1}{n} \sum_{j=1}^{n} \left(\frac{A(t_j)}{\frac{1}{2} \rho u_\infty^2 BL} - c_A \right) \tag{2.6}
\]
2.4 Luftkräfte am bewegten Profil

Brücken reagieren auf Windbelastung auf zwei unterschiedliche Arten: Sie antworten auf die Belastung mit statischer Auslenkung und oszillierender Bewegung.

Die Formulierung der Bewegungsgleichung bezogen auf die statische Ruhelage führt auf die folgende allgemeine Beschreibung des aeroelastischen Kräftespiels:

\[M \ddot{x} + K_d x = f_{Ls} + f_{Ld} \] (2.7)

wobei \(f_{Ls} \) der stationäre und \(f_{Ld} \) der oszillierende (dynamische) Anteil des Luftkraftvektors ist. \(x \) ist der Bewegungsvektor. Auf der rechten Seite stehen die struktureigenen Massen-, Dämpfungs- und Widerstandskräfte. \(M \) ist die Massenmatrix und \(K_d \) die komplexe Feder-Dämpfungsmatrix, siehe hierfür ausführliche Beschreibung bei Starossek [101]. Eine genauere Erläuterung der struktureigenen Kräfte findet sich in Abschnitt 4.2.

Die statische Auslenkung wird durch den stationären Anteil der Luftkraft hervorgerufen. Der dynamische Anteil des Luftkraftvektors besteht aus drei Komponenten:

\[f_{Ld} = f_{Lm} + f_{Lv} + f_{Lb}. \] (2.8)

Zum einen entstehen bei der Bewegung der Brücke Reaktionskräfte \(f_{Lm} \) im umgebenden Fluid, die sogenannten bewegungsinduzierten Kräfte, zum anderen auch Kräfte \(f_{Lv} \), durch regelmäßige Wirbelablösungen, zumeist an den Abreißpunkten der Strömung am Profil hervorgerufen, und auch stoßartige Kräfte \(f_{Lb} \) durch das Auftreffen von Wirbelballen, welche durch Turbulenzen in der atmosphärischen Grenzschicht entstehen. Diese Kräfte können je nach Strömungsverhältnissen gemeinsam oder getrennt voneinander auftreten. Die additive Zerlegung stellt eine Vereinfachung dar, da so die gegenseitige Beeinflussung der drei Kraftanteile nicht erfasst wird.

Es werden in Bezug auf die Entstehung der Schwingungen der Brücke zwei grundsätzliche Erregermechanismen unterschieden: fremdinduzierte Schwingungen hervorgerufen durch die Luftkraftkomponenten \(f_{Lv} \) und \(f_{Lb} \) und selbsterregte Schwingungen durch die Luftkraftkomponente \(f_{Lm} \). Die Entstehung dieser Luftkräfte und Schwingungen soll im Folgenden erläutert werden.

Fremdinduzierte Schwingungen werden durch folgende Instationaritäten der An- oder Umströmung des Brückenprofils hervorgerufen:

- Durch Schwankungen der Anströmung, beispielsweise durch Turbulenz oder Böen wird das Brückenprofil zu unregelmäßigen Schwingungen angeregt. Für die Größe der Schwingungsamplitude ist die Größe der Brücken-eigenfrequenz im Verhältnis zu der Größe der maßgeblichen Frequenzen des Turbulenzspektrums maßgebend.
Windeinwirkung auf Brücken

• Durch periodische Ablösung von Wirbeln an der stromabgewandten Seite des Brückenprofils kann es zu harmonischen Schwingungen begrenzter Amplitude kommen, wenn die Eigenfrequenz der Brücke im Resonanzbereich liegen, wie auch schon in Abschnitt 2.3 beschrieben wurde. Diese klingen bei Änderung der Anströmgeschwindigkeit wieder ab. Es kann bei großen Schwingungsamplituden zum sogenannten ”lock-in” kommen, einer Art Bewegungsinduzierung. Hierbei ruft die durch die Wirbelablösung entstandene Bewegung wiederum eine gesteuerte Wirbelablösung hervor (Synchronisation).

Selbsterregte (oder auch selbstinduzierte) Schwingungen werden durch die Bewegung der Brücke selbst hervorgerufen. Man spricht auch von selbst- oder bewegungsinduzierten Kräften. In der Literatur wird, wenn auch nicht ganz einheitlich, zwischen den folgenden Phänomenen unterschieden:

• Statische Divergenz
 Die statische Divergenz ist ebenfalls ein aeroelastisches Stabilitätsproblem, welches aber nicht auf bewegungsinduzierten Kräften beruht, sondern auf stationären Kräften, die sich durch die bei ansteigender Windgeschwindigkeit anwachsende elastische Deformation vergrößern [41]. Vor allem in der frühen Luftfahrt hat dieses Phänomen zu Schäden geführt. Bei Rechnung der Verdrehung eines Brückenträgers sollte deshalb auch immer die Abhängigkeit der stationären Strömungsbeiwerte vom Anstellwinkel berücksichtigt werden, um ein statisches Kippen des Brückenträgers auszuschließen zu können. Die verformungsbezogenen Anteile der Luftkräfte (siehe Abschnitt 4.4 für Details) wirken der Steifigkeit der Brücke entgegen. Heben sie sie auf, kommt es zu einem Stabilitätsversagen der Brücke, die aeroelastische Gesamtsteifigkeit der Brücke wird zu null.

• Galloping

• Das klassische Flattern
 Unter klassischem Flattern versteht man die gekoppelte Schwingung von vertikaler Schwingung und Rotationsschwingung.

• Torsionsflattern Wie oben bereits ausgeführt, bezeichnet im Folgenden das Torsionsflattern entkoppelte Flatterschwingungen des Rotationsfreiheitsgrades. Torsionsflattern tritt nur bei bestimmten Querschnittsformen auf. Ein typisches Profil ist das Profil der Tacoma Narrows Brücke (TC).
Dieses Profil wurde im Rahmen dieser Arbeit sowohl numerisch als auch experimentell untersucht. Eine detaillierte Beschreibung dieses Phänomens befindet sich in Abschnitt 4.6.

2.5 Einflußfaktoren für Luftkräfte

Folgende Einflussfaktoren bestimmen die Größe von Luftkräften:

Querschnittsform
Bezüglich der Form sind drei grundlegende Querschnittstypen zu unterscheiden:

- Stumpfe Körper mit definierten Abreißpunkten
- Mehr oder weniger stromlinienförmige aber kantige Querschnitte
- stromlinienförmige Körper mit reynoldszahlabhängigen Ablöse- und Wiederanlegepunkten

Der Einfluss der Querschnittsform auf die Luftkräfte steht im Zentrum dieser Arbeit. Im Brückenbau sind vor allem die ersten beiden Querschnittstypen für Hauptträger üblich. Wegen der wechselnden Anströmrichtung werden hauptsächlich symmetrische Querschnitte gewählt. Streng stromlinienförmige Querschnitte wie Tragflügel können aber nur dann verwirklicht werden, wenn wie beim Flugzeug die Anströmrichtung immer gleich ist. Der kreisförmige Querschnitt der Tragseile ist wegen seiner starken Reynoldszahlabhängigkeit eher dem letzten Querschnittstyp zuzuordnen. Die kantigen, aber eher stromlinienförmige Körper zeigen ja nach Proportion das charakteristische Verhalten der stumpfen oder stromlinienförmigen Körper.

Anströmrichtung

Bewegungsamplitude
Die Bewegungsamplitude hat einen nichtlinearen Einfluss auf die instationären

Reynoldszahl

Strouhalzahl
Die Strouhalzahl St gibt die Größe der Ablögeschwindigkeit $f H$ infolge profilbedingter Wirbelableitung im Verhältnis zur Anströmgeschwindigkeit u_∞ an (siehe Gleichung 2.5). Infolge resonanter Wirbelableitung vergrößert sich die mittlere Schwankungsbewegung der Grundströmung s_d (auch RMS genannt).

relative Rauhigkeit

Turbulenzgrad
Die Turbulenz hat einen ähnlichen Einfluss auf die Strömungskräfte wie die Oberflächenrauhigkeit. Der Grad der in der Anström vorhandenen Turbulenz verändert sowohl die Größe der gemittelten Bewegung wie auch den Betrag der gemittelten quadratischen Schwankungsbewegung.
2.6 Windbelastung und Bemessungsanforderungen an das aeroelastische Design

Das Ziel des entwerfenden Brücken ingenieurs ist eine Brücke zu entwerfen, die eine ausreichende Tragsicherheit (Sicherheit und Dauerhaftigkeit) und Gebrauchsfähigkeit bietet, um unter anderem große Verformungen, Risse, plastische Verformungen und natürlich einen vollen Einsturz zu vermeiden.

Den Bemessungsanforderungen entsprechend können die instationären Windlasten auch in die folgenden Kategorien eingeteilt werden:

- aeroelastische Instabilität (statische Divergenz und Flattern) (Kraftanteil f_{lm}) Sie kann zum Zusammenbruch der Konstruktion führen, wenn sie nicht unterdrückt wird.
 ⇒ Tragsicherheit

- Buffeting, turbulenzbedingte Bewegung der Brücke. (Kraftanteil f_{lb}) Diese Form der Windbelastung kann mehr oder weniger stark bei jeder Windgeschwindigkeit auftreten. Die entsprechenden Schwingungen sollten vor allem aus Gründen des Benutzungskomforts der Brücke begrenzt werden.
 ⇒ Gebrauchsfähigkeit, Dauerhaftigkeit

- Wirbelregte Schwingungen (Kraftanteil f_{lw}) Diese fremderregten Schwingungen, zumeist bei weniger stromlinienformigen Brückenprofilen, führen zu störenden Schwingungen begrenzter Amplitude.
 ⇒ Gebrauchsfähigkeit, Dauerhaftigkeit

2.7 Gebräuchliche Querschnittsformen des Brücken hauptträgers von weitgespannten Brückenbauwerken

Bei weitspannenden Seilbrücken tragen alle Bauteile zum aeroelastischen Verhalten der Brücke bei. Meist hat der Versteifungsträger den grössten Einfluss auf die aeroela-
stischen Eigenschaften des Gesamttragwerkes. Je länger die Brücke wird, desto mehr gewinnen auch die aerodynamischen Eigenschaften der anderen Bauteile wie Seile und Pylon an Einfluss. MIYATA [66] zeigt auf, dass mit anwachsender Spannweite die Gesamtkonfiguration der Brücke eine zunehmende Rolle spielt und die alleinige Modellierung des Hauptträgers zu ungenau wird.

2.7.1 Fachwerkträger

Abbildung 2.2: Fachwerkträger

Die offene Struktur des Fachwerkträgers in Querrichtung (siehe Abbildung 2.2) verhindert die regelmäßig Ausbildung und Ablösung von Wirbeln und verringert damit die Gefahr von resonanten Oszillationen.

Fachwerkträger sind meist 15% − 20% schwerer als trapezförmige Vollquerschnitte. Auch die Wartung ist schwieriger und teurer. Trotz alledem verbleiben die Fachwerkträger als Alternative zu den heute vielfach bevorzugten trapezförmigen Vollquerschnitten, insbesondere wegen ihrer aerodynamischen Eigenschaften. Entwicklungsgradient liegt insbesondere in der Reduzierung des Eigengewichtes und des Anström widerstandes, beispielsweise durch die Verwendung von runden oder noch besser elliptisch geformten Fachwerksegmenten [72].

2.7.2 Trapezähnliche Vollquerschnitte

Abbildung 2.3: Trapezähnlicher Vollquerschnitt

2.7.3 Mehrteilige Brückenquerschnitte

Abbildung 2.4: Mehrteiliger Brückenquerschnitt

Für den Bau der Brücke über die Stretta di Messina in Italien, mit deren Bau im Jahre 2006 begonnen werden wird und die mit einer Spannweite von 3500 m die größte bis dahin realisierte Spannweite besitzen wird, wurde ein dreiteiliger Querschnitt gewählt [29], wie in Abbildung 2.4 dargestellt. Die beiden zweispurigen Fahrtrichtungen und die Bahnstrecke erhalten jeweils einen separaten Längsträger. Zwischen den Querschnitten befinden sich große Öffnungen. Die drei Träger sind durch Querträger im Abstand von 30 m miteinander verbunden.
Kapitel 3

Beschreibung bewegungsinduzierter Luftkräfte

3.1 Einleitung

Flatterschwingungen wurden bei Flugzeugflügeln seit den Anfängen der Luftfahrt beobachtet. Vor allem die Einführung von Eindeckerflugzeugen mit ihren variierenden Flügelformen löste eine Flut von Veröffentlichungen aus [40]. So sind die ersten Veröffentlichungen über die Flattertheorie auch dem Flügelflattern gewidmet, wie beispielsweise die Arbeiten von KÜSSNER [57] und WAGNER [117].

Zur Berechnung der kritischen Windgeschwindigkeit ist die Kenntnis der bewegungsinduzierten Luftkräfte notwendig. Auch das Verfahren von SELBERG [95] (siehe Abschnitt 4.9), welches die kritische Windgeschwindigkeit nur auf Basis der Strukturgenschaften der Brücke bestimmt, beruht implizit auf der Kenntnis der bewegungsinduzierten Luftkräfte.

3.2 Theoretische Berechnung der bewegungsinduzierten Luftkräfte

3.2.1 Einführung

Die klassische Flattertheorie begründet sich auf eine analytische Ermittlung der bewegungsinduzierten Strömungskräfte, welche in den 30er Jahren von verschiedenen Autoren für Tragflügelprofile hergeleitet wurde. Am bekanntesten ist die analytische Lösung nach Theodorsen [109]. Er betrachtet die zweidimensionale Umströmung eines harmonisch schwingenden Tragflügelstreifens mit Querruder. Die Bewegung des Fluids wird als Potentialströmung (siehe auch Abschnitt 7.2) modelliert, was zu einer Vernachlässigung der visken Eigenschaften der Luft führt.

Grundlage der Arbeit von Theodorsen war die Beobachtung, dass dynamische Systeme mit mehreren Freiheitsgraden, in jenem Fall ein Tragflügel, unter bestimmten Strömungsbedingungen instabil werden. Als minimale Anzahl von Freiheitsgraden ermittelt er zwei, da Einfreiheitsgradsysteme durch die Strömungskräfte gedämpft werden.

Die Luftkräfte werden durch Druckunterschiede auf der Profiloberfläche hervorgerufen, welche durch die vorgegebenen harmonischen Bewegungen in Vertikalrichtung und in Rotationsrichtung entstehen.

Große Bewegungsamplituden können im grenzstabilen Fall vernachlässigt werden und nur kleine Bewegungen, wie sie nahe der Stabilitätsgrenze vorkommen, müssen betrachtet werden. An der Stabilitätsgrenze entfällt die Notwendigkeit, abklingende oder angefachte Bewegungen zu betrachten, weil hier von harmonischen Bewegungen konstanter Amplitude ausgegangen wird.

Zur Herleitung der Bewegungsgleichung wird ein Kräftegleichgewicht aus Trägheits-, Widerstands- und Strömungskräften gebildet.

3.2.2 Strömungskräfte nach Potentialtheorie

Bei der Umströmung eines Profils treten sowohl zirkulatorische (Z) und nicht-zirkulatorische (NZ) Strömungskräfte auf. Die Strömungskräfte, die auf den Querschnitt wirken, setzen sich aus diesen beiden Anteilen zusammen:

\[A = A_{NZ} + A_{Z} \quad (3.1) \]
\[M_{L} = M_{LNZ} + M_{LZ} \quad (3.2) \]

Die Auftriebskraft \(A \) steht senkrecht zur Anströmrichtung. Nach Potentialtheorie, welche von einer reibungsfreien Strömung ausgeht, kann eine Auftriebskraft nur entstehen, wenn um den Körper eine zirkulatorische Strömung herrscht. Über einen
gedachten Wirbel wird der Einfluss der Zähigkeit der Luft rechnerisch modelliert, ohne dass die Viskosität selbst angesetzt wird. Dies ergibt sich aus der Kutta-Joukowski-Auftriebsformel

\[A = \rho B |u_\infty| \Gamma \]

Hierbei ist \(\Gamma \) die Zirkulation. In diesem Fall verschwindet der Widerstand. Dies bezeichnet man als D’Alembertsches Paradoxon. Es gilt für beliebige Körper. Einen Beweis des Paradoxons findet man in Lehrbüchern, beispielsweise bei Zierep [128].

Die Größe der Zirkulation lässt sich aus der Kutta-Joukowskiische Abströmbedingung bestimmen:

\[\gamma(x = B) = \frac{d\Gamma(x = B)}{dx} = 0 \]

3.2.3 Der Einfluss der Brückenbewegung auf die Strömung

In Abbildung 3.3 ist ein umströmter Brückennquerschnitt mit seinen Freiheitsgraden und den zugehörigen Luftkräften dargestellt. Der Querschnitt der Breite $B=2b$ wird mit konstanter Geschwindigkeit u_{∞} parallel zur unverschobenen Profilmittellinie umströmmt. Das System besitzt zwei Systemfreiheitsgrade, die Vertikalbewegung $h(t)$ und Rotationsbewegung $\alpha(t)$. Damit folgt für den Verschiebungsvektor

$$x(t) = \begin{pmatrix} h(t) \\ \alpha(t) \end{pmatrix}$$

(3.5)

Um die Auswirkung der Profilbewegung auf die Strömung beschreiben zu können, wird an dieser Stelle die Lösung der Bewegungsgleichung (Gleichung 4.13) vorweg genommen: Unter der oben genannten Voraussetzung kleiner harmonischer Schwin-
Abbildung 3.3: Freiheitsgrade und zugehörige Luftkräfte

gangsamplituden ergibt sich x in Eulerdarstellung mit $i = \sqrt{-1}$

\[x(t) = \hat{x} e^{i\omega t} \]

(3.6)

Dabei ist

\[\hat{x} = \begin{pmatrix} \hat{h} \\ \hat{\alpha} \end{pmatrix} \]

(3.7)

der Amplitudenvektor und ω die Kreisfrequenz, eine beliebige Bewegungsfrequenz der Brückenschwingung.

Die Zeitableitungen von Gleichung 3.5 führen auf die Geschwindigkeit bzw. die Beschleunigung.

\[\dot{x} = \begin{pmatrix} \dot{h} \\ \dot{\alpha} \end{pmatrix} = i\omega x = \begin{pmatrix} i\omega h \\ i\omega \alpha \end{pmatrix} \]

\[\ddot{x} = \begin{pmatrix} \ddot{h} \\ \ddot{\alpha} \end{pmatrix} = -\omega^2 x = \begin{pmatrix} -\omega^2 h \\ -\omega^2 \alpha \end{pmatrix} \]

(3.8)

Der schwingende Körper erzeugt ablösende Wirbel in der Bewegungsfrequenz ω. Hintern dem Profil entsteht eine Wirbelschleppe, wie in Abbildung 3.4 gezeigt. Die Wirbel haben einen Abstand L_w, auch Wellenlänge genannt. Hieraus ergibt sich die Definition der reduzierten Frequenz

\[k = \frac{2\pi b}{L_w} = \frac{\omega b}{u_\infty} \]

(3.9)

Dies ist der fundamentale Ähnlichkeitsparameter der instationären Aerodynamik [40]. Die Zeit, die ein Wirbel zur Ablösung benötigt, der sich mit der Geschwindigkeit
u_∞ bewegt, wird auf das konvektive Zeitmaß b/u_∞ normiert
\[s = \frac{u_\infty t}{b} \] (3.10)
Diese dimensionslose Zeitvariable wird vor allem zur Beschreibung der bewegungsinduzierten Kräfte im Zeitbereich genutzt.

![Diagram](image)

Abbildung 3.4: Zur Definition der reduzierten Frequenz k

3.2.4 Luftkräfte nach Theodorsen

Die Strömungskräfte in vertikaler Richtung und um die Längsachse, zusammengefasst im zweidimensionalen Luftkraftvektor \mathbf{F}_L, lassen sich analytisch nach Theodorsen folgendermaßen bestimmen
\[\mathbf{F}_L = \begin{pmatrix} A \\ M_2 \end{pmatrix} = \begin{pmatrix} L_1 + L_2 + L_3 \\ L_4 + \frac{L_3}{2}(L_4 - L_3) \end{pmatrix} \] (3.11)
wie auch in Abbildung 3.5 gezeigt. Die einzelnen Kraftanteile sind
\[L_1 = 2\pi\rho bu_\infty C \left(u_\infty \alpha + \dot{b} + \frac{b}{2} \dot{\alpha} \right) \] (3.12)
\[L_2 = \pi \rho b^2 \dot{h} \] (3.13)
\[L_3 = \pi \rho b^2 u_\infty \ddot{\alpha} \] (3.14)
\[L_4 = -\frac{\pi}{8} \rho b^3 u_\infty \dddot{\alpha} \] (3.15)

Zur Übertragbarkeit auf andere Maßstäbe ist es sinnvoll, die bewegungsinduzierten Kräfte in dimensionsloser Form darzustellen.

\[
\mathbf{F}_L = \left(\begin{array}{c} \mathbf{A} \\ \mathbf{M}_L \end{array} \right) = q_0 2 \pi k^2 \left(\begin{array}{cc} c_{ab} & b_{cna} \\ b_{cnah} & b_{cnc} \end{array} \right) k \tag{3.16}
\]

Hierin bezeichnet \(q_0 = 0.5 \mu u^2_\infty \) den Staudruck.

Die Luftkraftkoeffizienten sind komplex und ergeben sich mit der Einführung von \(k \) aus dem Gleichsetzen der Gleichungen 3.11 und 3.16 wie folgt:

\[
c_{ab}(k) = 1 - \frac{2i}{k} C \tag{3.17}
\]

\[
c_{na}(k) = -\frac{1}{k}[i(C+1) + \frac{2}{k} C] \tag{3.18}
\]

\[
c_{nah}(k) = \frac{i}{k} C \tag{3.19}
\]

\[
c_{cna}(k) = \frac{i}{2k}(C-1) + \frac{1}{k^2} C + \frac{1}{8} \tag{3.20}
\]

Die Flatterderivativa \(c_{ij} \) sind abhängig von der Anströmgeschwindigkeit und von der Eigenfrequenz. Sie werden deshalb in Abhängigkeit der reduzierten Frequenz \(k \) beschrieben. Klöppel und Thiele [56] verwenden in ihrer Arbeit in den späten 1960er Jahren diese komplexe Darstellung zur Beschreibung der bewegungsinduzierten Luftkräfte. Diese Luftkraftkoeffizienten werden im weiteren Verlauf dieser Arbeit als Flatterderivativa bezeichnet. Es ergeben sich insgesamt acht reelle Funktionen, vier für die Realteile der Flatterderivativa und vier für die Imaginarteile der Flatterderivativa. Die Flatterderivativa sind Funktionen der reduzierten Frequenz \(k \). Mit dieser Abhängigkeit von \(k \) wird deutlich, dass die Luftkräfte sowohl von den dynamischen Eigenschaften der Strömung, repräsentiert durch \(u_\infty \) und \(b \), als auch von den Struktureigenschaften des angeströmten Körpers, ausgedrückt durch die Bewegungsfrequenz \(\omega \), abhängig sind. Der Verlauf der theoretischen Flatterderivativa ist im Anhang A jeweils im Vergleich mit den numerisch bzw. experimentell ermittelten Flatterderivativa gezeigt. Sie werden getrennt nach Real- und Imaginarteil in
Abhängigkeit von der reduzierten Frequenz k aufgetragen. In Anhang E sind die acht Flatterderivativa als Zahlenwerte in Abhängigkeit von der reduzierten Frequenz k angegeben.

Abbildung 3.6: Dreidimensionale Darstellung der Flatterderivativa

In Abbildung 3.6 sind die Flatterderivativa in dreidimensionaler Darstellung und in Abbildung 3.7 in der komplexen Ebene dargestellt.

Die Flatterderivativa repräsentieren damit die bewegungsinduzierten Luftkräfte in Abhängigkeit von der reduzierten Frequenz k.

Die nichtzirkulatorischen Anteile von c_{hh} und $c_{\alpha\alpha}$ sind im Brückenbau grundsätzlich vernachlässigbar, werden in dieser Arbeit der Vollständigkeit wegen aber weiter mitgeführt. Diese Anteile sind als Zusatzmassen bzw. zusätzliche Massenträgheitsmomente zu verstehen (siehe auch Abschnitt 4.4). Während bei Tragflügeln diese Zusatzmasse durchaus einen Einfluss haben kann, können diese bei Brückenprofilen wegen der im Verhältnis zu der verdrängten Luftmasse großen eigenen Masse vernachlässigt werden, ohne die Berechnung signifikant zu beeinflussen. Die komplexe Funktion C, die Theodorsen-Funktion, ist aus Hankelfunktionen zweiter Art und nullter und erster Ordnung aufgebaut.

$$C(k) = \frac{H^{(2)}_1(k)}{H^{(2)}_0(k) + 2H^{(2)}_1(k)}$$ (3.21)
Abbildung 3.7: Darstellung der Flatterderivativa nach Theodorsen in der komplexen Ebene

Mit der Theodorsen-Funktion werden die zirkulatorischen Anteile der Luftkräfte modeliert.

Starossek [101] gibt folgende Nähерung an:
\[
\tilde{C} = \tilde{F} + i\tilde{G}
\]

Realtteil: \(\tilde{F} \approx \frac{0.500502k^3 + 0.512607k^2 + 0.210400k + 0.021573}{k^3 + 1.635578k^2 + 0.251239k + 0.021508} \)

Imaginärteil: \(\tilde{G} \approx \frac{0.000146k^3 + 0.122397k^2 + 0.327214k + 0.001995}{k^3 + 2.481481k^2 + 0.934530k + 0.089318} \)

Hodges [44] gibt die folgende, prägnantere Nähерungsformel an:

\[
\tilde{C}(k) = \frac{0.01365 + 0.2808/k - \frac{i}{k}}{0.01365 + 0.3455/k - k^2} \]

Eine weitere Nähерungslösung stellt die Fouriertransformierte der Jones-Funktion (siehe Abschnitt 5.2) dar, welche mit der Nähерungslösung von Hodges weitestgehend identisch ist. Wie man sieht, ergeben sich mit den beiden Nähungslösungen
Abweichungen von bis ca 2 % für den Realteil und bis zu 8 % für den Imaginärteil gegenüber der exakten Lösung (siehe Abbildung 5.1).

Abbildung 3.8: Güte der Näherungslösungen für die Theodorsen-Funktion C

Für den in dieser Arbeit hauptsächlich untersuchten k-Bereich von $0.2 \leq k \leq 1.0$ sind die Abweichungen der beiden Näherungsformeln gegenüber der exakten Formel in Abbildung 3.8 aufgetragen.

3.2.5 Anwendbarkeit der theoretisch ermittelten Luftkräfte nach Theodorsen im Brückenbau

Theodorsen leitet die Luftkräfte nur für harmonische Schwingungen (d.h. Schwingungen konstanter Amplitude) her, also für eine reelle Flatterfrequenz ω. Dies bedeutet physikalisch, dass der kritische Grenzzustand vorliegt, die Schwingung also weder angenehrt wird noch abklingt.

Desweiteren wird eine Anströmung senkrecht zur Längsachse des Profils vorausgesetzt. Die Schwingungsamplituden sind infinitesimal klein.

Die Luftkräfte, die mit der analytischen Lösung nach Theodorsen berechnet wurden, stellen für die unendlich dünne Platte in reibungsfreier Strömung die exakte

3.2.6 Kriterien für Plattenähnlichkeit

Als plattennählich können alle Profile bezeichnet werden, um deren Kontur die Stromung weitgehend angelegt bleibt, die Stromlinien also damit weitgehend parallel mit der Profilkontur verlaufen.

Starossek [101] formuliert Kriterien für das Prädikat "plattennählich (im klassischen Sinne)". Zum einen gibt er Hinweise für den Praktiker, wie man durch reine Anschauung ohne weiteren Aufwand einschätzen kann, ob die Modellierung der bewegungsinduzierten Luftkräfte für einen Querschnitt hinreichend genau ist. Als geometrische Kriterien werden ein gut definierter Staupunkt, eine scharfe Hinterkante und ein geringes Höhen-Breitenverhältnis als Hinweis auf Plattenähnlichkeit genannt. Desweiteren müssen die stationären Luftkraftbeiwerte für $C_a(\alpha)$ und $C_m(\alpha)$ eine ähnliche Tendenz wie die theoretischen Werte der ebenen Platte zeigen. Falls Untersuchungen mit der Methode der freien gekoppelten Schwingungen durchgeführt wurden, wird als Kriterium eine Abweichung von der kritischen Windgeschwindigkeit, welche unter Zugrundelegung von theoretischen Luftkräften ermittelt wurde, von weniger als 20% angegeben. Falls experimentell ermittelte Flatterderivate vorliegen, sollten diese ähnliche Tendenzen zeigen wie die theoretischen Flatterderivate nach TheodorSEN.

Im Rahmen dieser Arbeit werden die Profile nach den genannten Kriterien auf Plattenähnlichkeit untersucht.

3.3 Erweiterung der klassischen Flattertheorie um die laterale Bewegung

Normalerweise beeinflusst die laterale Bewegung das aeroelastische Stabilitätsverhalten von Brückenquerschnitten nicht nachweislich.

In den letzten Jahren wurde aber zunehmend auch die Rolle dieses dritten Freiheitsgrades untersucht. Schwingungen parallel zur Anströmrichtung sind in der Tragflügelfläche wegen der hohen Steifigkeit vernachlässigbar. Im Brückenbau dagegen, insbesondere bei großen Spannweiten, sind die Eigenfrequenzen von Bewegungen parallel zur Anströmrichtung zumeist niedriger als die in Querrichtung und die der Drehschwingungen.
Erweitert man Gleichung 3.16 um die Lateralbewegung, ergibt sich folgendes Gleichungssystem:

\[\mathbf{F}_L = \begin{pmatrix} D \\ A \\ M_L \end{pmatrix} = \omega^2 \pi \rho d^2 \begin{pmatrix} c_{wew} & c_{wh} & b_{cw} \\ c_{wew} & c_{wh} & b_{ch} \\ b_{cw} & b_{ch} & b^2 c_{wew} \end{pmatrix} x \]

(3.25)

mit

\[x = \begin{pmatrix} \bar{w} \\ \bar{h} \\ \bar{\alpha} \end{pmatrix} e^{i\omega t} \]

(3.26)

In Abschnitt 9.10 wird der Einfluss der Lateralbewegung \(w \) auf Auftrieb und Moment und der Einfluss von Vertikalbewegung und Rotationsbewegung auf die Widerstandskraft anhand von Ergebnissen aus der numerischen Simulation diskutiert.

3.4 Reelle Darstellung der Flatterderivativa

Die Gleichungen beziehen sich im Unterschied zur Darstellung von Starossek [101], die auf der historisch älteren komplexen Darstellung beruht, auf die Gesamtbreite des Querschnittes \(B \) und nicht auf die halbe Breite \(b \).

Die reelle Darstellung nach Scanlan änderte sich über die folgenden Jahre. Nachfolgend soll ein kurzer Abriss über die Entwicklung dieser Darstellung bis zur heute gebräuchlichen Form gegeben werden.

Die anfangs eingeführten dimensionsbehafteten Luftkraftbeiwerte wiesen Mängel in der Übertragbarkeit auf andere Maßstäbe auf [101].

In [85] werden die Trägheitsterme der Vertikalbewegung und Drehbewegung vernachlässigt. Dadurch ergibt sich die folgende Formulierung:

\[A = \rho_0 (2B) \left[KH_1^*(K) + KH_2^*(K) \frac{B h}{u_\infty} + K^2 H_3^*(K) \frac{h}{u_\infty} \right] \]

(3.27)

\[M_L = \rho_0 (2B^2) \left[KA_1(K) \frac{h}{u_\infty} + KA_2(K) \frac{B h}{u_\infty} + K^2 A_3(K) \alpha \right] \]

(3.28)

mit der auf die Gesamtbreite \(B \) bezogenen reduzierten Frequenz \(K \)

\[K = \frac{B \omega}{u_\infty} \]

(3.29)
Später wurde die Gleichung 3.27 um die zunächst vernachlässigten Trägheitsterme $K^2 H^*_i (K) \frac{\dot{h}}{u_{\infty}}$ für die Vertikalbewegung und Gleichung 3.28 um den Term $K^2 A^*_i (K) \frac{\dot{u}}{u_{\infty}}$ für die Drehbewegung erweitert [98].

Die Diskussion über die Beteiligung der Lateralschwingung wurde auch von SCANLAN aufgegriffen und führte zu einer Berücksichtigung des dritten Freiheitsgrades w. Die neueste, von SCANLAN in [98] verwendete Darstellung lautet:

$$D = p_0 B [K P^*_1 (K) \frac{\dot{h}}{u_{\infty}} + K P^*_2 (K) \frac{\dot{B}}{u_{\infty}} + K^2 P^*_3 (K) \frac{\ddot{h}}{u_{\infty}} + K P^*_4 (K) \frac{\dot{u}}{u_{\infty}} + K^2 P^*_5 (K) \frac{\ddot{u}}{u_{\infty}} + K^2 P^*_6 (K) \frac{\dddot{w}}{u_{\infty}}]$$ (3.30)

$$A = p_0 B [K H^*_1 (K) \frac{\dot{h}}{u_{\infty}} + K H^*_2 (K) \frac{\dot{B}}{u_{\infty}} + K^2 H^*_3 (K) \frac{\ddot{h}}{u_{\infty}} + K H^*_4 (K) \frac{\ddot{u}}{u_{\infty}} + K^2 H^*_5 (K) \frac{\dddot{w}}{u_{\infty}} + K^2 H^*_6 (K) \frac{\dddot{w}}{u_{\infty}}]$$ (3.31)

$$M_L = p_0 B^2 [K A^*_1 (K) \frac{\dot{h}}{u_{\infty}} + K A^*_2 (K) \frac{\dot{B}}{u_{\infty}} + K^2 A^*_3 (K) \frac{\ddot{h}}{u_{\infty}} + K A^*_4 (K) \frac{\ddot{u}}{u_{\infty}} + K^2 A^*_5 (K) \frac{\dddot{w}}{u_{\infty}} + K^2 A^*_6 (K) \frac{\dddot{w}}{u_{\infty}}]$$ (3.32)

Zum einen wurde die Darstellung um einen dritten Freiheitsgrad erweitert, indem man die Bewegung in Anströmrichtung hinzugezogen hat. Zum anderen wurden die Flatterderivata um den Faktor 2 quantitativ vergrößert und damit neu normiert, da in der neuen Darstellung der Vorfaktor $p_0 (2B)$ durch $p_0 (B)$ ersetzt wurde.

Die quasistatische Theorie [99] nähert die Koeffizienten in der reellen Formulierung nach SCANLAN durch folgende Konstanten

$$P^*_1 = -\frac{2}{K} \nu_D, \quad P^*_2 = \frac{1}{K} \frac{d \zeta}{d a}, \quad P^*_3 = \frac{1}{K^2} \frac{d \Phi}{d a}$$ (3.33)

International gebräuchlich ist es, die dimensionslosen Koeffizienten H^*_i und A^*_i in Diagrammen gegenüber der reduzierten Geschwindigkeit

$$U_{red} = \frac{u_{\infty}}{n}$$ (3.34)

aufzutragen. Die Darstellung über U_{red} bietet den Vorteil, dass hier die Anströmgeschwindigkeit im Zahler steht. Will man die Auswirkungen von bewegungsinduzierten Kräften auf eine Brückenkonstruktion bestimmen, steht die Eigenfrequenz n [Hz] der Brücke, welche maßgeblich die Eigenfrequenz der bewegungsinduzierten Schwingung bestimmt, zumeist fest. Insbesondere bei Querschnitten, die eine Neigung zum Einfreiheitsgradflattern besitzen, gibt der Verlauf der Flatterderivata H^*_i (Galloping)
und A_2^* (Torsionsflattern) und insbesondere dessen Nulldurchgang bereits Aufschluss über die kritische Windgeschwindigkeit (siehe Abschnitte 4.6 und 4.7).

Die Umrechnung von der reduzierten Frequenz k zu U_{red} lautet

$$k = \frac{\pi}{U_{red}} \quad (3.35)$$

3.5 Weitere alternative Darstellungen der Flatterderivativa

Neben der Darstellung nach Scanlan haben sich in den vergangenen Jahrzehnten noch zahlreiche andere alternative Darstellungen zur komplexen Darstellung der Flatterderivativa entwickelt.

Iwamoto [50] verwendet folgende Darstellung, die der in dieser Arbeit verwendeten Darstellung ähnlich ist.

\[
A = \pi \rho B \omega^2 \left(L_{zR} \frac{z}{B} + L_{zI} \frac{\dot{z}}{B \omega} + L_{\theta R} \theta + L_{\theta I} \dot{\theta} \right) \quad (3.36)
\]

\[
M_L = \pi \rho B \omega^2 \left(M_{zR} \frac{z}{B} + M_{zI} \frac{\dot{z}}{B \omega} + M_{\theta R} \theta + M_{\theta I} \dot{\theta} \right) \quad (3.37)
\]

Hierbei steht der Index R für den Realteil der Kraftkomponente und I für den Imaginarteil. z ist die Vertikalkomponente der Bewegung und θ ist der Rotationswinkel.

Die Flatterderivativa müssen nicht umgerechnet werden, sondern entsprechen den in dieser Arbeit verwendeten Flatterderivativa wie folgt:

\[
\begin{align*}
&c_{zh}' = L_{zR} ; & c_{zh}'' = L_{zI} ; \\
&c_{\theta h}' = L_{\theta R} ; & c_{\theta h}'' = L_{\theta I} ; \\
&c_{zh}' = M_{zR} ; & c_{zh}'' = M_{zI} ; \\
&c_{\theta h}' = M_{\theta R} ; & c_{\theta h}'' = M_{\theta I} .
\end{align*}
\]

Diese Darstellung findet sich auch in anderen japanischen Veröffentlichungen, wie beispielsweise bei Sato et al [84]. Sie bietet wie die komplexe Darstellung den Vorteil, dass die Flatterderivativa leicht zu identifizieren sind.

Zasso [125] schlägt eine neue Schreibweise vor, die die Vorteile der reellen Darstellung...
nach Scanlan und der klassischen Darstellung nach Küßner kombiniert:

\[A = pB \left[-h_1(c_D0 + K_{A0}) \frac{h}{u_\infty} + \frac{\pi}{2U_{*\text{red}}^2} \frac{h}{B} \right. \]

\[-h_2(c_D0 + K_{A0}) \frac{\dot{\alpha}B}{u_\infty} + h_3K_{A0}\alpha \right] \tag{3.38}

\[M_L = pB^2 \left[-a_1K_{M0} \frac{h}{u_\infty} + a_4 \frac{\pi}{2U_{*\text{red}}^2} \frac{h}{B} \right. \]

\[-a_2K_{M0} \frac{\dot{\alpha}B}{u_\infty} + a_3K_{M0}\alpha \right] \tag{3.39}

mit

\[U_{*\text{red}} = \frac{U_{\text{red}}}{2\pi} \frac{1}{K}; \quad c_D0 = c_D|_{\alpha_s=0}; \quad K_{A0} = \left. \frac{dc}{d\alpha} \right|_{\alpha_s=0}; \quad K_{M0} = \left. \frac{dc}{d\alpha} \right|_{\alpha_s=0} \]

Diese dimensionslosen Koeffizienten werden durch die jeweiligen stationären Koeffizienten geteilt, so dass diese nicht explizit vorher ermittelt werden müssen:

\[h^*_1 = h_1(c_D0 + K_{A0}); \quad h^*_2 = h_2(c_D0 + K_{A0}); \quad h^*_3 = h_3K_{A0}; \quad h^*_4 = h_4 \]

\[\alpha^*_1 = h_1K_{M0}; \quad \alpha^*_2 = a_2K_{M0}; \quad \alpha^*_3 = a_3K_{A0}; \quad \alpha^*_4 = a_4 \]

Der wesentliche Unterschied zwischen der Scanlan-Notation und der von Zasso vorgeschlagenen Konvention liegt darin, dass in den Zasso-Koeffizienten die dimensionslosen Vorfaktoren \(U_{*\text{red}} \) bzw. \(U_{*\text{red}}^2 \) eingearbeitet sind. Er argumentiert, dass mit dieser Schreibweise die Auflösung im Bereich niedriger reduzierter Geschwindigkeiten verbessert wird.

3.6 Vergleich der vorgestellten Darstellungen

Starossek [103] vergleicht die klassische komplexe Notation mit der reellen Notation. Seiner Meinung nach stellt die reelle Formulierung der Flatterderivativa keine Verbesserung gegenüber der klassischen komplexen Formulierung dar. Die komplexe Darstellung ermöglicht eine einfache Identifizierung der Flatterderivativa anhand der Indizes, während die Zuordnung der reellen Flatterderivativa zu den jeweiligen Bewegungen und den daraus resultierenden Luftkräften sehr viel weniger transparent ist. Nachteilig ist außerdem, dass mit Einführung der neuesten Notation, die trotz quantitativer Änderung der Flatterderivativa mit der alten Bezeichnungsweise identisch ist, zusätzliche Verwirrung gestiftet wird. Dies führt dazu, dass in Veröffentlichungen,
in denen die Bewegungsgleichungen in der reellen Formulierung nicht explizit angegeben werden, wie beispielsweise in der von Flamand [35], eine eindeutige quantitative Identifizierung der jeweiligen Flatterderivativa nicht möglich ist.

Kapitel 4

Die Berechnung der kritischen Windgeschwindigkeit im Frequenzbereich

4.1 Modellierung der Brückenstruktur

\[w(x,t) = \xi_w(x)w(t) \] (4.1)
\[h(x,t) = \xi_h(x)h(t) \] (4.2)
\[\alpha(x,t) = \xi_\alpha(x)\alpha(t) \] (4.3)

\(\xi_w, \xi_h \) und \(\xi_\alpha \) sind jeweils drei diskrete Eigenformen der Freiheitsgrade Biegung in horizontaler Richtung und Biegung in vertikaler Richtung und Torsion. \(w(t), h(t) \) und
\(\alpha(t) \) sind die verallgemeinerten Koordinaten der jeweiligen Eigenform. Diese Trennung von Eigenform und den zeitabhängigen verallgemeinerten Koordinaten wird als Trennung der Veränderlichen bezeichnet. Vereinfachend werden die verallgemeinerten Koordinaten im Folgenden nur als Freiheitsgrade bezeichnet.

Die strukturellen Eigenschaften der Brücke, die für die Beschreibung des elastomechanischen Verhaltens maßgebend sind, sind die Masse \(m(x) \), das Massenträgheitsmoment \(\theta(x) \), Biegesteifigkeit \(K_h(x) = EI(x) \) und Torsionssteifigkeit \(K_\alpha(x) = GJ(x) \). \(I(x) \) ist hierin das Flächenträgheitsmoment zweiten Grades, \(E \) der Elastizitätsmodul, welcher die Materialeigenschaften repräsentiert, \(G \) der Schubmodul und \(J(x) \) das Torsionsflächenträgheitsmoment zweiten Grades.

Generalisierte Systemeigenschaften sind:

\[
\begin{align*}
m^* &= \int_0^L m(x) \xi^2_h(x) \, dx \quad (4.4) \\
\theta^* &= \int_0^L \theta(x) \xi^2_\alpha(x) \, dx \quad (4.5) \\
K_h^* &= \int_0^L \frac{E}{I} \left(\frac{d^2}{dx^2} \xi_h(x) \right)^2 \, dx \quad (4.6) \\
K_\alpha^* &= \int_0^L \frac{G}{I_T} \left(\frac{d}{dx} \xi_\alpha(x) \right)^2 \, dx \quad (4.7)
\end{align*}
\]

Sind \(m(x), \theta(x), K_h(x) = EI(x) \) und \(K_\alpha(x) = GJ(x) \) über die Brücke konstant oder stetig verlaufend, kann das mechanische Modell auf ein Streifenmodell mit den Systemeigenschaften \(m^*, \theta^*, K_h^* \) und \(K_\alpha^* \) reduziert werden. Die Biege- und Torsionssteifigkeiten werden in Federsteifigkeiten umgerechnet. Man spricht im Allgemeinen von generalisierten Systemeigenschaften. Da im Rahmen dieser Arbeit nur mit generalisierten Systemeigenschaften gearbeitet wird, werden im Folgenden die generalisierten Systemeigenschaften \(m^*, \theta^*, K_h^* \) und \(K_\alpha^* \) der Einfachheit halber nur als \(m, \theta, K_h \) und \(K_\alpha \) bezeichnet. Das durch die Verwendung von generalisierten Koordinaten vereinfachte mechanische System ist in Abbildung 4.1 dargestellt.

Die Bewegungsgleichung für Biege-Torsionsschwingungen ohne die Berücksichtigung der durch die Windanströmung entstehenden Kräfte kann in ihrer einfachsten Form als Matrizengleichung zweiter Ordnung beschrieben werden [101]:

\[
M \ddot{x} + K \dot{x} = 0 \quad (4.8)
\]
mit der Massenmatrix

\[
M = \begin{pmatrix} m & 0 \\ 0 & \theta \end{pmatrix} \quad (4.9)
\]

und der komplexen Feder-Dämpfungs-Matrix

\[
K = \begin{pmatrix} (1 + ig_h)K_h & 0 \\ 0 & (1 + ig_h)K_\alpha \end{pmatrix} \quad (4.10)
\]
Abbildung 4.1: Mechanisches Zweifreiheitsgradsystem mit generalisierten Koordinaten

Die Massenmatrix M wird aus den Hauptdiagonalelementen m (Masse) und θ (Massenträgheitsmoment) gebildet. Die komplexe Feder-Dämpfungsmatrix K^d beschreibt die elastischen Rückstell- und Dämpfungskräfte des Systems mit den beiden Steifigkeitsparametern K_h und K_α und den Dämpfungsverlustwinkeln γ_h und γ_α, wobei harmonische Schwingungen vorausgesetzt werden. Hierbei bezeichnet der Index jeweils den zugehörigen Bewegungsfreiheitsgrad. Der Luftkraftvektor F_L wird aus dem Auftrieb A und dem Luftkraftmoment M_L gebildet, wie in Gleichung 3.16 definiert.

Mit den Dämpfungsverlustwinkeln γ_h und γ_α werden alle dissipativen Eigenschaften der Brücke zusammengefasst. Dies beinhaltet die sogenannte Materialdämpfung, also die Dissipation, die durch innere Reibung in den einzelnen Baustoffen entsteht und dissipative Effekte, die an den Fugen zwischen den Komponenten des Brückensystems auftreten. Da die Betrachtung der brückenimmanenten Dissipation nicht im Blickpunkt dieser Arbeit steht, werden alle diese Dissipationsmechanismen im Folgenden vereinfacht unter dem Begriff Strukturdämpfung zusammengefasst. Die Strukturdämpfung ist im Allgemeinen klein.

Ohne Windeinwirkung sind die beiden Bewegungsgleichungen entkoppelt. Die Eigenkreisfrequenzen der entkoppelten Schwingungsformen ohne Windeinwirkung lassen sich aus der folgenden Lösung der Eigenwertaufgabe

$$\begin{vmatrix} D - \frac{1}{\omega^2}I \end{vmatrix} = 0$$

mit der dynamischen Systemmatrix $D = K^d + M$ (aus Umformung der Gleichung 4.13) und dem Ansatz für harmonische Bewegungen $x(t) = \hat{x} e^{i\omega t}$ bestimmen [101]. I ist die Einheitsmatrix. Im Spezialfall der harmonischen Schwingung ohne Dämpfungseinfluss lauten die Lösungen der Eigenwertaufgabe

$$\omega_h^2 = \frac{K_h}{m} \text{ und } \omega_\alpha^2 = \frac{K_\alpha}{\theta}$$

Die positiven Wurzeln der Eigenwerte ergeben die Eigenkreisfrequenzen ω_h für die
Vertikalbewegung und ω_{n} für die Drehbewegung für eine Brücke ohne Windanströmung (in [101] auch als Vakuumeigenfrequenzen bezeichnet).

Hiermit können die drei folgenden Ähnlichkeitsparameter für die Struktur

\[
\varepsilon = \frac{\omega_{n}}{\omega_{h}}
\]

Bezogener Trägheitsradius
\[
r = \frac{1}{b} \sqrt{\frac{\theta}{m}}
\]

Bezogene Masse
\[
\mu_{m} = \frac{m}{\pi \rho b^{2}}
\]

Oltmanns [71] untersucht die Amplitudenabhängigkeit von Luftkräften experimentell mit Hilfe der Methode der erzwungenen Schwingungen an einem Teilmodell mit zwei Freiheitsgraden. Für die Berechnung der Fluid-Struktur-Interaktion verwendet Oltmanns ein FEM-Modell zur Modellierung der gekoppelten Bewegungsgleichung und bezieht die experimentell berechneten Flatterderivativen in die Berechnung ein. Er schließt aus der beobachteten Amplitudenabhängigkeit, dass damit auch eine Ortsabhängigkeit der Flatterderivativen gegeben ist, da die Amplitude entsprechend der
Flattereigenform über die Brückenlängsrichtung variert.

Feill [33] entwickelte ein FEM-Programm, welches auf einer Zeitbereichslösung beruht. Es erlaubt, auch das natürliche Turbulenzspektrum des Windes in die Berechnung einzubeziehen. Dies ist mit den beiden oben genannten Programmen nicht möglich, da sie sich auf die zeitlich gemittelte Windgeschwindigkeit beziehen.

4.2 Die zweidimensionale Bewegungsgleichung unter Einbeziehung der Luftkräfte

Brücken sind in vielen Freiheitsgraden schwingungsfähig. Am aeroelastischen Stabilitätsversagen Flattern sind zumeist zwei Arten von Schwingungen beteiligt: vertikale Biegeschwingungen und Torsionsschwingungen. Wird ein Brückenprofil seitlich mit einer Geschwindigkeit \(u_\infty \) angeströmt, übt die Strömung Kraft auf das Brückenprofil aus. Durch geometriependete Druckunterschiede zwischen Vorder- und Hinterkante sowie Ober- und Unterseite entstehen eine Auftriebskraft \(A \) senkrecht zur Anströmrichtung und ein Moment \(M_L \) um die elastische Achse. Diese Kräfte können statischer und dynamischer Natur sein. Wird dieses Brückenprofil bewegt, beispielsweise durch die störförmigen Kräfte einer Bö oder durch Krafteinwirkung aus Wirbelablösung, entstehen durch diese anfängliche Bewegung die bereits eingeführten bewegungsinduzierten Luftkräfte. Durch die Strömungskräfte entstehen Bewegungen, durch die Auftriebskraft \(A \) eine Translationsbewegung \(h \) senkrecht zur Strömungsrichtung und durch das Luftkraftmoment \(M_L \) eine Rotationsbewegung \(\alpha \) um die elastische Achse. Das klassische Flattern entsteht durch gekoppelte Vertikal- und Rotationsbewegungen. Die Kopplung kommt dadurch zustande, dass sowohl Vertikalbewegung als auch Torsionsbewegung jeweils einen Beitrag zu den Luftkräften \(A \) und \(M_L \) leisten. Hieraus folgt die gekoppelte Bewegungsgleichung

\[
M \ddot{x} + K^x \dot{x} = F_L
\]
(4.13)

also

\[
\begin{pmatrix}
 m & 0 \\
 0 & \theta \\
\end{pmatrix}
\ddot{\mathbf{x}} +
\begin{pmatrix}
 (1 + i \eta h)K_h & 0 \\
 0 & (1 + i \eta h)K_\alpha \\
\end{pmatrix}
\dot{\mathbf{x}} = q_0 2 \pi k^2 \begin{pmatrix}
 c_{hh} & b_{ch} \\
 b_{ch} & b_{c\alpha} \\
\end{pmatrix}
\mathbf{x}
\]
(4.14)
4.3 Der aeroelastisch stabile Grenzzustand

Das Flattern wird durch eine Störbewegung ausgelöst. Die Flatterbewegung ist eine harmonische Bewegung oder eine angefachte Bewegung, deren Amplituden im Rahmen linearer Theorie bis ins Unendliche anwächst. Das Flattern tritt oberhalb einer bestimmten Anströmgeschwindigkeit auf. Diese Geschwindigkeit ist die sogenannte kritische Windgeschwindigkeit \(u_{krit} \).

Unterhalb der kritischen Windgeschwindigkeit klingen die durch die Störbewegung ausgelösten Schwingungen wieder ab.

Wäre das System ungestört, würde es auch oberhalb der kritischen Windgeschwindigkeit zu keiner Flatterbewegung kommen. Deshalb wird das Flattern auch als Stabilitätsproblem klassifiziert.

Ist die Anströmgeschwindigkeit identisch mit der kritischen Windgeschwindigkeit, liegt der aeroelastisch labile Grenzzustand vor. Die Bewegung ist nach einer Störbewegung weder angefacht noch abklingend, sondern eine harmonische Bewegung mit konstanter Amplitude.

Die dimensionslose bezogene kritische Windgeschwindigkeit

\[
\zeta = \frac{u_{krit}}{\omega h b}
\]

(4.15)

bezeichnet das Verhältnis der kritischen Geschwindigkeit zum Produkt der durch die Vertikalbewegung entstehenden Wirbelfrequenz und der halben Querschnittsbreite b.

4.4 Aerodynamische Dämpfung

Reine Biegeschwingungen sind bei üblichen Brückenquerschnitten und tragflügelähnlichen Profilen grundsätzlich aerodynamisch gedämpft [40]. Reine Torsionschwingungen werden über weite Frequenzbereiche gedämpft. Bei stumpfen Querschnitten kann es auch bei entkoppelten Torsionschwingungen zu angefachten Bewegungen kommen.
Die von Theodorsen entwickelte Lösung für Flatterderivativa gilt für harmonische Schwingungen. Eine Bewegung in Vertikalrichtung unter dem Einfluß von Dämpfungs- kräften lässt sich in der Form
\[h_D = h e^{i \omega t} = h e^{-\omega'' t} e^{i \omega' t} \] (4.16)
mit einer komplexen Eigenfrequenz \(\omega \) darstellen, siehe Argyris [3] und Starossek [101].

\(\omega' \) repräsentiert den schwingungsrelevanten Anteil und \(\omega'' \) den dämpfenden Anteil. Für den Freiheitsgrad Rotation gelten diese Zusammenhänge gleichermaßen. In schwingenden Systemen ist der Imaginärteil der Frequenz viel kleiner als der Realteil.

Die ungedämpfte Frequenz berechnet sich aus der Länge des Zeigers der komplexen Eigenfrequenz \(\omega \) zu \(\sqrt{\omega'^2 + \omega''^2} \). Das Verhältnis zwischen dem Imaginärteil und dem Betrag des Realteils der Frequenz \(\omega \) wird nach Argyris [3] durch das Maß \(\xi \) angegeben:
\[\xi = \frac{\omega''}{\sqrt{\omega'^2 + \omega''^2}} \] (4.17)

\(\xi \) wird als Lehrsches Dämpfungsmaß bezeichnet. Üblich ist es auch, das Abklingverhalten mit dem logarithmischen Dämpfungsmaß \(\delta \approx 2 \pi \xi \) anzugeben. \(\delta \) bezeichnet den natürlichen Logarithmus des Verhältnisses zweier aufeinanderfolgender Verschiebungenmaxima [104]
\[\delta = \ln \frac{x_n}{x_{n+1}} \] (4.18)

Der bereits eingeführte Dämpfungsverlustwinkel \(g_i \), \(i = h, \alpha \) ist proportional zu \(\xi_i \):
\[g_i \approx 2 \xi_i \]. Die aerodynamischen Kräfte beeinflussen das Dämpfungsverhalten und das Schwingungsverhalten des aeroelastischen Gesamtsystems.

Die komplexen Flatterderivativa lassen sich in der folgenden dimensionsbehafteten Form darstellen:
\[A_h = \omega^2 (\pi \rho b^2 c_{bh}) \] (4.19)
\[A_\alpha = \omega^2 (\pi \rho b^3 c_{b\alpha}) \] (4.20)
\[M_h = \omega^2 (\pi \rho b^3 c_{ah}) \] (4.21)
\[M_\alpha = \omega^2 (\pi \rho b^4 c_{a\alpha}) \] (4.22)

Die Bewegungsgleichung 4.13 schreibt sich dann wie folgt
\[\begin{pmatrix} m & 0 \\ 0 & \theta \end{pmatrix} \ddot{x} + \begin{pmatrix} (1 + ig_h) K_h & 0 \\ 0 & (1 + ig_\alpha) K_\alpha \end{pmatrix} x = \begin{pmatrix} A_h & A_\alpha \\ M_h & M_\alpha \end{pmatrix} x \] (4.23)

Die dimensionsbehaftete Luftkraftmatrix \(C \) läßt sich in einen Real- und einen Imaginärteil zerlegen:
\[C = \begin{pmatrix} A_h & A_\alpha \\ M_h & M_\alpha \end{pmatrix} = \begin{pmatrix} A_h' & A_\alpha' \\ M_h' & M_\alpha' \end{pmatrix} + i \begin{pmatrix} A_h'' & A_\alpha'' \\ M_h'' & M_\alpha'' \end{pmatrix} \] = \(C' + i C'' \) (4.24)
Der Realteil von C lässt sich mit der Matrix M zur aeroelastischen Gesamtmassenmatrix

$$M_{ae} = M + C' \frac{1}{\omega^2} \begin{pmatrix} m + \frac{A'_h}{M^h} & \frac{A'_\alpha}{M^\alpha} \\ \theta + \frac{M'_h}{\theta^h} & \end{pmatrix}$$

(4.25)
ohren mit dem Realteil der Feder-Dämpfungsmatrix $\text{Re}(K^d)$ zur aeroelastischen Gesamtsteifigkeitsmatrix

$$K_{ae} = \text{Re}(K^d) - C' = \begin{pmatrix} K_h - A'_h & -A'_\alpha \\ -M'_h & K_\alpha - M'_\alpha \\ \end{pmatrix}$$

(4.26)
zusammenfassen. Die aeroelastische Dämpfungsmatrix C_{ae} wird durch die Differenz des Imaginärteils der aeroelastischen Feder-Dämpfungsmatrix und des Imaginärteils der aerodynamischen Luftkraftmatrix C beschrieben:

$$C_{ae} = \text{Im}(K^d) - C'' = \begin{pmatrix} g_h K_h - K''_h & -A''_\alpha \\ -M''_h & g_\alpha K_\alpha - M''_\alpha \\ \end{pmatrix}$$

(4.27)

Letzte Formulierung wird für die Zeit-Raum-Formulierung benötigt, siehe Abschnitt 8.3.7. Somit lautet die homogene Differentialgleichung des Gesamtsystems

$$[-\omega^2 M_{ae} + i C'' + K_{ae}] \mathbf{x} = 0$$

(4.28)
ohren auch

$$[-\omega^2 M + i C_{ae} + K_{ae}] \mathbf{x} = 0$$

(4.29)

Die aerodynamische Dämpfung beeinflusst die Eigenfrequenz des Schwingungssystems. Näherungsweise linear liefert sie die abklingende Schwingung eines jeden Freiheitsgrades durch

$$\omega_{Dj} = \omega_j \sqrt{1 - \xi_{aj}^2}, \ j = h, \alpha$$

(4.30)
beschreiben, um den Grad des Abklingens für jeden Freiheitsgrad einzeln zu erfassen.

Bei unterkritischen Schwingungsverhältnissen dominiert die Biegefrequenz bei der Vertikalbewegung, die Torsionsfrequenz bei der Rotationsschwingung. Die aerodynamischen Dämpfungskoeffizienten ξ_{ah} und $\xi_{a\alpha}$ beschreiben somit die Wirkung der aerodynamischen Dämpfungskräfte in der jeweiligen Eigenfrequenz als ein Maß für das Abklingverhalten der Schwingung.

4.5 Die Ermittlung der kritischen Windgeschwindigkeit

Die Berechnung der kritischen Windgeschwindigkeit erfolgt durch Lösung der komplexen Eigenwertaufgabe des linearisierten Stabilitätsproblems, welches sich aus Gleichung 4.13 mit der kritischen Windgeschwindigkeit als Verzweigungslast ergibt. Eine
detaillierte Herleitung und Beschreibung des Rechenweges zur Ermittlung der kritischen Eigenfrequenz gibt Starossek [101]. Starossek benutzt eine abweichende Definition für \hat{x}, indem er \hat{h} durch den dimensionslosen Ausdruck \hat{h}/b verwendet. Dies hat letztlich aber keinen Einfluß auf die Eigenwertberechnung, so dass in diesem Rahmen auf eine Umstellung seiner übersichtlichen und formschönen Gleichungen auf den in dieser Arbeit verwendeten Eigenvektor verzichtet wird.

Die Frequenz der gekoppelten Flatterbewegung im aerodynamisch labilen Grenzzustand wird im Folgenden als kritische Eigenfrequenz ω_{krit} bezeichnet. Wird Gleichung 4.13 umgeformt, ergibt sich nach [101] aus

$$A = K^{-1}(M + L)$$

mit der reellen Lösung $\lambda = 1/\omega^2$ das charakteristische Polynom der Eigenwertaufgabe zu

$$|A - \lambda I| = \lambda^2 + a_1 \lambda + a_0 = 0$$

mit

$$A = \frac{1}{\mu_m} \begin{pmatrix} \frac{\mu_m + c_{h h}}{\omega_m(1 + i g_h)} & \frac{c_{h h}}{\omega_m(1 + i g_h)} \\ \frac{c_{h h}}{\omega_m(1 + i g_h)} & \frac{\mu_m r^2 + c_{m h}}{r^2 \omega_m(1 + i g_h)} \end{pmatrix}$$

A ist die aerodynamische Gesamtmatrix. Im grenzstabilen Fall ist eine der beiden Lösungen $\lambda_i, i = 1, 2$ der quadratischen Gleichung reell. Die reelle Lösung $\lambda = 1/\omega^2$ des charakteristischen Polynoms der Eigenwertaufgabe (4.32) liefert die Flatterfrequenz ω_{krit}. ω_{krit} ist also die Frequenz der gekoppelten Biege-Torsions-Schwingung der Brücke im grenzstabilen Fall. Die beiden komplexen Koeffizienten des charakteristischen Polynoms berechnen sich zu

$$a_0 = \frac{(\mu_m + c_{h h})(\mu_m r^2 + c_{m h}) - c_{h h}c_{m h}}{\mu_m^2 \varepsilon^2 \omega_m^2 \gamma}$$

$$a_1 = -\frac{\varepsilon^2 \mu_m (1 + ig_h)(1 + ig_h) + (\mu_m r^2 + c_{m h})(1 + ig_h)}{\mu_m^2 \varepsilon^2 \omega_m^2 \gamma}$$

mit

$$\gamma = (1 + ig_h)(1 + ig_h)$$

Mit der vollständigen Lösung nach Starossek wird im Gegensatz zur Ermittlung nur der reellen Lösung des Eigenwertproblems das Schwingungsverhalten auch unterhalb und oberhalb des Grenzzustandes beschrieben.

Im grenzstabilen Zustand wird eine der beiden Eigenfrequenzen nach Gleichung 4.32 positiv reell. Erhöht sich die Geschwindigkeit, bleibt die Schwingungsbewegung weiterhin angefacht. Es kommt zu einer weiteren Energiezufuhr aus der Luftströmung.
Dies steht im Gegensatz zum Schwingungsverhalten einer Struktur im Falle der Wirbelresonanzbewegung. Hier klingt die Schwingung oberhalb der Geschwindigkeit, die sich entsprechend der jeweiligen Strouhalzahl und der Eigenfrequenz des Systems ergibt, wieder ab. Hier nimmt die Energiezufuhr bei einer Erhöhung der Strömungsgeschwindigkeit wieder ab.

Die komplexen Lösungen des Eigenwertproblems

\[\lambda_j(k) = -\frac{a_1}{2} \pm \sqrt{\frac{(a_1)^2}{4} - a_0}, \quad j = 1, 2 \] \hspace{1cm} (4.37)

sind daher ebenfalls abhängig von \(k \). \(k \) wird kontinuierlich geändert, bis einer der beiden Eigenwerte \(\lambda_i \) positiv reell wird. Die Eigenfrequenz berechnet sich für einen beliebigen Wert \(k \) für den Lösungsast \(j \) zu

\[\omega_j(k_i) = \frac{1}{\lambda_j(k_i)} \] \hspace{1cm} (4.38)

Mit Hilfe der kritischen Eigenfrequenz \(\omega_{krit} \) und der kritischen reduzierten Frequenz \(k_{krit} \) lässt sich die kritische Windgeschwindigkeit \(u_{krit} \) berechnen:

\[u_{krit} = \frac{\omega_{krit} b}{k_{krit}} \] \hspace{1cm} (4.39)

Alternative Berechnungsmethoden der kritischen Flatterfrequenz \(\omega_{krit} \) sind die Anwendung des Routh-Hurwitz-Kriteriums [94] oder die Bestimmung derjenigen reduzierten Frequenz \(k \), für die die beiden aus Real- und Imagänteil der zu Null gesetzten Determinanten des Eigenwertproblems 4.32 gewonnenen Gleichungen gleich sind [119], [98].

Unter Zugrundelegung der Systemwerte des Datensatzes 2 und der theoretischen Flatterderivativa nach Theodorsen sollen die Ergebnisse der vollständigen Lösung des Eigenwertproblems (4.32) diskutiert werden. In den Abbildungen 4.2 und 4.3 ist der Verlauf der Eigenfrequenz und des logarithmischen Dämpfungsmaßes über die variierte reduzierte Frequenz \(k \) für die die beiden aus Real- und Imagänteil der zu Null gesetzten Determinanten des Eigenwertproblems 4.32 gewonnenen Gleichungen gleich sind [119], [98].

Unter Zugrundelegung der Systemwerte des Datensatzes 2 und der theoretischen Flatterderivativa nach Theodorsen sollen die Ergebnisse der vollständigen Lösung des Eigenwertproblems (4.32) diskutiert werden. In den Abbildungen 4.2 und 4.3 ist der Verlauf der Eigenfrequenz und des logarithmischen Dämpfungsmaßes über die variierte reduzierte Frequenz \(k \) aufgetragen. Bei unterkritischen Strömungsverhältnissen dominiert die Vertikalkomponente des zur Eigenfrequenz \(\omega_1 \) gehörigen Eigenvektors bei der Vertikalschwingung und die Torsionskomponente des zur Eigenfrequenz \(\omega_2 \) gehörigen Eigenvektors bei Rotationsschwingungen. Für große \(k \) nähern sich Biege- und Torsionsfrequenz den Vakuumeigenfrequenzen an, der Zustand wird zunehmend stationär. Die Strömungsgeschwindigkeit wird immer kleiner (im Nenner), bzw. die Wirbelfrequenz immer größer (im Zähler). Sowohl Realteil als auch Imagänteil der Luftkräfte werden klein und nehmen einen stationären Wert an. Nur bei Querschnitten, die zu Wirbelresonanz neigen, kann es bei reduzierten Frequenzen \(k > 1 \) noch zu einem Ansteigen der Luftkräfte infolge der Vertikalbewegung \(h \) kommen, siehe hierfür Kapitel 10.
Das Schwingungsverhalten von Brücken mit stumpfen Querschnitten, wie beispielsweise H-Querschnitten (Tacoma Brücke), oder mit gedrungenen Rechteckquerschnitten unterscheidet sich vom Schwingungsverhalten der Brücken mit plattenähnlichem Querschnitt. Bei ersterem dominiert die Rotationsbewegung. In solchen Fällen lässt sich das aeroelastische Verhalten auch durch ein einfaches Einfreiheitsgradmodell beschreiben, welches auf das folgende Stabilitätskriterium führt [101]:

\[c_{\alpha\alpha}''(\alpha\theta) = g_\alpha(\theta\pi^4b^4 + c_{\alpha\alpha}') \] (4.40)

Durch den Realteil \(c_{\alpha\alpha}' \) des komplexen Flatterderivatums \(c_{\alpha\alpha} \) wird die Massenträgheit erhöht, wenn es für die entsprechende reduzierte Frequenz ein positives Vorzeichen besitzt. Die theoretische Lösung für \(c_{\alpha\alpha}' \) nach Theodorsen und auch die experimentell und numerisch ermittelten Flatterderivativa verbleiben positiv für alle \(k \). Es kommt also grundsätzlich zu einer Erhöhung des Wertes auf der rechten Seite. Der Nulldurchgang des Flatterderivatums \(c_{\alpha\alpha}'' \) bestimmt lediglich näherungsweise die kritische Windgeschwindigkeit.

Bei Brücken mit Querschnitten, deren \(c_{\alpha\alpha}'' \)-Funktion keinen Vorzeichenwechsel aufweist und damit für alle \(k \) negativ bleibt, sind ungekoppelte Torsionsschwingungen nicht möglich. Die \(c_{\alpha\alpha}'' \)-Funktionen plattenähnlicher Querschnitte weisen keinen Vorzeichenwechsel auf und neigen somit nicht zum reinen Torsionsflattern.

Ein anderer Ansatz ist es, die Stabilitätsgrenze durch die Forderung zu ermitteln, dass die Summe von aerodynamischer Dämpfung und Strukturdämpfung, siehe Gleichung
Abbildung 4.3: Dämpfungsgrade

4.27, gleich Null ist, also

\[g_\alpha K_\alpha - M''_\alpha = 0 \]
(4.41)

oder auch

\[c''_{\alpha\alpha} = \mu_\alpha r^2 g_\alpha \]
(4.42)

Wird die Flatterfrequenz \(\omega \) näherungsweise gleich der Eigenfrequenz \(\omega_\alpha \) gesetzt (sofern \(c'_{\alpha\alpha} \approx 0 \)), ergibt sich nach den Gleichungen 4.22 und 4.24

\[M''_\alpha \approx \omega_\alpha \rho b^3 c''_{\alpha\alpha} \]
(4.43)

Die Abweichung der Flatterfrequenz von der Torsionseigenfrequenz ist bei stumpfen Querschnitten klein. Im Versuch nach der Methode der freien gekoppelten Schwingungen (siehe Abschnitt 8.3) ergab sich beispielsweise eine Abweichung der kritischen Eigenfrequenz \(\omega_{\text{krit}} \) von der Torsionseigenfrequenz von 5%. In den Abbildungen 8.5, 8.6, 8.7 und 8.8 sind die kritischen Frequenzen für alle experimentell nach der Methode der erzwungenen Schwingung untersuchten Profile angegeben.

In Kapitel 9 werden diese beiden Näherungsformeln miteinander und gegenüber der vollständigen Lösung verglichen. Hierbei wird die Vertikalbewegung mit den aus ihr induzierten numerisch berechneten Luftkräften einbezogen.
4.7 Galloping

Ublicherweise wird die Sicherheit gegen Galloping durch eine Untersuchung der Eigenschaften der stationären Luftkraftbeiwerte eines Profils nachgewiesen. Ein notwendiges, aber nicht hinreichendes Kriterium ist das Kriterium nach Den Hartog [27]

\[-\left(\frac{dc_A}{d\alpha} + c_W\right) > 0 \quad (4.44)\]

Dieses Kriterium ist konservativ, da es die Strukturdämpfung nicht berücksichtigt. Da der Widerstandsbeiwert immer positiv ist, muss die Steigung des Auftriebsbeiwertes folglich negativ sein.

Der Nachweis unter Einbeziehung der Strukturdämpfung wird wie der Nachweis der Sicherheit gegen Flattern als Stabilitätsnachweis geführt. Es ist der Nachweis zu erbringen, dass der Betrag der negativen aerodynamischen logarithmischen Dämpfungsmaß \(\delta_a\) größer als das aus der Strukturdämpfung der Brücke resultierende logarithmische Dämpfungsmaß \(\delta_s\) ist:

\[\delta_a + \delta_s \leq 0 \quad (4.45)\]

mit

\[\delta_a = -\frac{\pi u_\infty \rho D}{2 \pi \omega_h} \frac{dc_A}{d\alpha} \quad (4.46)\]

Da alle im Rahmen dieser Arbeit untersuchten Profile das Kriterium nach Den Hartog erfüllen, liegt entsprechend diesem Nachweis bei keinem Profil eine Galloping-Gefährdung vor.

Hortmanns [46] ermittelt für die Rechteckprofile mit den Seitenverhältnissen \(H:B = 1:1\) und \(H:B = 1:2\) einen Vorzeichenwechsel des Flatterderivativums \(c_h''\), was auf eine aerodynamische Instabilität infolge der Vertikalbewegung, das Galloping, deutet. Galloping wurde nur bei wenigen Querschnitten beobachtet, die mehr oder weniger quadratische Querschnittsabmessungen besitzen.
4.8 Erweiterungen der klassischen zweidimensionalen Flattertheorie

Gegenüber den Annahmen der traditionellen linearen Flattertheorie könnten folgende Faktoren bei den stetig wachsenden Spannweiten an Bedeutung gewinnen [124]:

- Aus den aerodynamischen Kräften resultierende nichtlineare Verformung der Tragstruktur
- Kopplung von mehr als zwei Freiheitsgraden

4.9 Näherungsberechnung der Flattergeschwindigkeit nach Selberg

SELBERG [95] fasst die Ergebnisse der potentialtheoretischen Flatterberechnung in einer einfachen Näherung zusammen, die STAROSSEK als bezogene kritische Windgeschwindigkeit formuliert [101]:

$$\zeta = 0.74 \sqrt{(\varepsilon^2 - 1)\mu m r}$$

(4.47)

Im Folgenden seien die kritischen Windgeschwindigkeiten nach Formel 4.47 mit den kritischen Windgeschwindigkeiten, die mit der Lösung der Eigenwertaufgabe 4.32 nach Abschnitt 4.5 für die in dieser Arbeit verwendeten Datensätze verglichen. In Abbildung 4.4 sind die kritischen Windgeschwindigkeiten nach der SELBERG-Formel mit den kritischen Windgeschwindigkeiten, die mit der vollständigen Lösung unter Ansatz

![Diagramm](image)

Abbildung 4.4: Vergleich von Selberg-Formel und vollständiger Lösung mit theoretischen Flatterderivativa nach Theodorsen für den Datensatz 1 (Anhang F)

4.10 Die Berechnung der Eigenvektoren

Vertikalbewegung und Rotationsbewegung können in unterschiedlichem Maße an der Flatterbewegung beteiligt sein. Das Verhältnis \(\chi = \omega / \omega_x \) zeigt, wie stark die jeweilige Schwingung an der gekoppelten Schwingung beteiligt ist. Je näher \(\chi \) an eins liegt, desto stärker ist die Rotationsbewegung an der Flatterbewegung beteiligt.

Dieses kann auch anhand des Eigenvektors im kritischen Grenzfall gezeigt werden. Für jede Eigenfrequenz existiert ein zugehöriger Eigenvektor \(\mathbf{x} \). Der Eigenvektor lässt sich durch

\[
(A(k) - \lambda I) \mathbf{x} = 0
\]

(4.48)
berechnen, wenn k die kritische reduzierte Eigenfrequenz eingesetzt wird. Der Drehwinkel wird in Rad angegeben und die Vertikalbewegung in Metern. Der Eigenvektor lässt sich bis auf seinen Länge bestimmen. Der Absolutbetrag lässt sich nicht bestimmen, da das Gleichungssystem homogen ist. Wird ein Freiheitsgrad vorgegeben, lassen sich alle weiteren verhältnismäßig zu diesem bestimmen. Mit $\tilde{\alpha} = 1$ ergibt sich relativ dazu [101]

$$\dot{h} = -b \frac{A_{12}}{A_{11}} \frac{1}{\omega^2}$$ oder auch (4.49)

$$\dot{\tilde{h}} = -b \frac{A_{22}}{A_{21}} \frac{1}{\omega^2}$$ (4.50)

Es folgt ein Zahlenbeispiel. Für den Datensatz 2 (Anhang F) berechnet sich die Eigenfrequenz im kritischen Grenzzustand zu $\omega = 0,93 \, \text{l/s}$, wenn die theoretischen Flatterderivate nach Theodorsen der Berechnung zugrunde gelegt werden. Die kritische Windgeschwindigkeit beträgt in diesem Fall 43,1 m/s. Die zugehörige reduzierte Eigenfrequenz ergibt sich damit zu $k = 0,334$. Der Eigenvektor bestimmt sich dann zu

$$\mathbf{x} = \begin{pmatrix} \dot{h} \\ \tilde{\alpha} \end{pmatrix} = \begin{pmatrix} 0,0820 + 0,0439i \\ 0,0873 \end{pmatrix}$$

Für die Berechnung wurde $\tilde{\alpha} = 0,0873 \, \text{rad} \equiv 5^\circ$ vorgegeben. Beträgt die Amplitude der Drehbewegung 5°, beträgt die Amplitude der Vertikalbewegung 9,3 cm, dies entspricht 0,6% der Länge des Profils, also 0,012 b. Der Winkel ϕ_b zwischen Vertikal- und Rotationszeiger beträgt 28,2$^\circ$. Die Rotationsbewegung eilt der Vertikalbewegung nach, siehe Abbildung 4.5.

Abbildung 4.5: Eigenvektor des Rechenbeispiels
Kapitel 5

Modellierung bewegungsinduzierter Schwingungen im Zeitbereich

5.1 Stand der Forschung

Für die Bestimmung der kritischen Windgeschwindigkeit ist die Frequenzbereichsformulierung hinreichend.

In verschiedenen Fällen ist aber auch eine Zeitbereichsberechnung der Bewegung gewünscht, wie beispielsweise für Simulationen beim Entwurf von aktiven Schwingungslämpfern, die durch ihre Wirkung die Frequenz des schwingenden Systems verändern, siehe beispielsweise ACHIKHE [2]. Im Zeitbereich können Turbulenz und bewegungsinduzierte Schwingungen im unterkritischen Strömungszustand überlagert werden, was für den Nachweis der Gebrauchsfähigkeit eines Querschnittes notwendig sein kann. Zwar sind alle diese Berechnungen und Nachweise mit den entsprechenden frequenzbezogenen Gleichungen auch im Frequenzbereich durchführbar, aber für einen direkten Vergleich mit Experimenten ist dann aber entweder eine Transformation der Rechenergebnisse in den Zeitbereich oder eine Transformation der zeitsicheren experimentellen Ergebnisse in den Frequenzbereich notwendig. BERGMANN [6] nutzt die Zeitbereichsgleichungen beispielsweise für eine experimentelle Simulation der Fluid-Struktur-Interaktion.

Da die Flatterderivativa nur für harmonische Bewegungen gelten, ist für die Beschreibung beliebiger, also auch angefachter oder abklingender selbstinduzierter Bewegungen, eine alternative Darstellung notwendig. Diese folgt aus der inversen Fouriertransformation der Flatterderivativa. Die inverse Fouriertransformation überträgt Funktionen, die wie die Flatterderivativa im Frequenzbereich formuliert sind, in den Zeitbereich. Die Flatterderivativa sind abhängig von der reduzierten Frequenz \(\bar{k} \) und sind somit im Frequenzbereich formuliert.
Scanlan et al. [87], [86] beschreiben die Erweiterung der für Tragflügel entwickelten Theorie von Wagner [117] unter Benutzung der Näherungsformeln von Jones [52] auf allgemeine Brückenquerschnitte. Die Aufsätze beschränken sich auf die Flatterderivativa des Torsionsflatterns c_{m0} und c_{m0}, also A_2^t und A_3^t in reeller Schreibweise, siehe hierfür auch die kritische Diskussion von Starossek [101]. Diese Herangehensweise zur Ermittlung von Übergangsfunktionen wird später von Caracoglia et al. [19], [20] und Costa [12] wieder aufgegriffen und auf alle acht Flatterderivativa der Freiheitsgrade Vertikalbewegung und Rotationsbewegung erweitert. In [18] stellen Caracoglia et al. eine Methode zur experimentellen Ermittlung von Übergangsfunktionen (siehe folgenden Abschnitt) vor. Hierfür wird ein Querschnitt um ein Einheitsmaß α_0 ausgelenkt und die Kraftantwort darauf gemessen.

Eine andere Möglichkeit ist die ebenfalls sehr verbreitete Verwendung von Rationale-Funktionen-Approximationen an, siehe hierfür die Arbeiten von Chen et al. [22] und Wilde/Fujino [123]. Hier werden die Luftkräfte in der komplexen Ebene im Frequenzbereich angenähert.

5.2 Grundlagen

Die beliebige Bewegung eines Tragflügels wurde erstmals von Wagner [117] untersucht. Im Falle einer plötzlichen Verdrehe $\hat{\alpha}$ berechnet sich der Abwind im hinteren Viertelpunkt zu

$$\hat{w}_{3/4} = \begin{cases} 0 & t < 0 \\ -u_\infty \hat{\alpha} & t \geq 0 \end{cases} \quad (5.1)$$

$\hat{\alpha}$ ist eine plötzliche Verdrehe [101]. Zur Beschreibung dieses Abwindes ist im Falle des durch eine unendlich dünne Platte angeneherten Tragflügels nur eine einzige Übertragungsfunktion $W(s)$, dies ist die sogenannte Wagnerfunktion, erforderlich. Diese von Wagner [117] erstmals hergeleitete Funktion lautet in ihrer ursprünglichen Form

$$W(s) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{C(k)}{k} e^{sk} dk = 1(s) + \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{C(k) - 1}{k} e^{sk} dk \quad (5.2)$$

Verschiedene Autoren haben dafür Näherungsfunktionen entwickelt, die für dünne Tragflügel gültig sind. Diese sind in den verschiedenen Lehrbüchern zur Aeroelastik.
dokumentiert. Zum einen die Jones Funktion [52]

\[
\phi(s) = \begin{cases}
0 & s < 0 \\
1 - 0.165e^{-0.0455s} - 0.335e^{-0.3s} & s \geq 0
\end{cases}
\] (5.3)

\[
W(s) \cong \phi(s) = 1 - 0.165e^{-0.0455s} - 0.335e^{-0.3s} \quad s \geq 0
\] (5.4)

welche in den Gleichungen 5.13, 5.14 und 5.15 verwendet wird. Alternativ dazu kann auch die Rationale-Funktionen-Approximation von GARRICK [42]

\[
\psi(s) = \begin{cases}
0 & s < 0 \\
- s^2 + 2s + 4 & s \geq 0
\end{cases}
\] (5.5)

\[
W(s) \cong \psi(s) = - s^2 + 2s + 4 \quad s \geq 0
\] (5.6)

abhängig von der dimensionslosen Zahl angewendet werden. Zur Übertragung dieser Funktionen auf Brückenprofile muss eine allgemeinere Darstellung gewählt werden, welche die Charakteristika des jeweiligen mehr oder weniger plattenähnlichen Querschnittes erfasst. Die Jones-Funktion kann allgemeiner als Summe von n Exponentialfunktionen mit variablen Koeffizienten

\[
\phi(s) = a_0 - \sum_{j=1}^{n} a_j e^{-b_j s} \quad a_0, a_j, b_j \in \mathbb{R}
\] (5.7)

beschrieben werden, siehe hierfür beispielsweise FÖRSCHEING [40], CARACOGLIA [19] und andere. Auf ähnliche Weise lässt sich auch die GARRICK-Formel erweitern. Diese soll aber im Rahmen dieser Arbeit nicht verwendet werden. Im weiteren soll mit der Approximationsformel 5.7 gearbeitet werden, vor allem wegen der einfachen Transformierbarkeit der Exponentialfunktion. Der stationäre Anteil \(a_0\) repräsentiert den stationären Auftriebsbeiwert. Transformiert man die Funktion in den Frequenzbereich, erhält man für den Tragflügel die folgende Äquivalenz

\[
C(k) = \bar{\phi}'(k) + \phi(0)
\] (5.8)

mit

\[
\bar{\phi}'(k) = \int_0^{\infty} \phi'(s) e^{-iks} ds
\] (5.9)

Somit folgt nach einer Fouriertransformation von 5.7 für die THEODORSEN-Funktion \(C\) folgende Näherung

\[
\tilde{C} = \tilde{F} + i\tilde{G}
\] (5.10)

mit

\[
\tilde{F} = a_0 + \sum_{j=1}^{n} \left(-a_j + \frac{a_j b_j^2}{b_j^2 + k^2} \right)
\] (5.11)
Abbildung 5.1: Vergleich von \tilde{C} und C

$$\tilde{G} = -k \sum_{j=1}^{n} \left(\frac{a_j b_j}{b_j^2 + k^2} \right)$$

(5.12)

Setzt man die Koeffizienten der Näherungslösung nach Jones aus den Gleichungen 5.3 und 5.4 ein, erhält man im Frequenzbereich eine relativ gute Näherungslösung der Theodorsen-Funktion (siehe hierzu auch Abschnitt 3.2). Diese ist in Abbildung 5.1 dargestellt. Diese Lösung stellt also für plattenähnliche Profile auch eine gute Näherung dar. Für Profile, die im aeroelastischen Verhalten mehr oder weniger stark von der ebenen Platte abweichen, muss eine andere Lösung gefunden werden.

Für ein dynamisches System mit den Freiheitsgraden $x^T = [w, h, \alpha]$ können die aeroelastischen Kräfte wie folgt berechnet werden

$$D = \rho u_\infty^2 \frac{d c_L (\alpha)}{d \alpha} \int_{-\infty}^{s} \left(\Phi_{Da}(s-\tau) \dot{\alpha} + \Phi_{Da}(s-\tau) \frac{\dot{h}(\tau)}{b} \right. \right.$$

$$+ \Phi_{Da} \frac{\ddot{w}(\tau)}{b} \bigg) \, d\tau$$

(5.13)

$$A = \rho u_\infty^2 \frac{d c_M (\alpha)}{d \alpha} \int_{-\infty}^{s} \left(\Phi_{Da}(s-\tau) \dot{\alpha} + \Phi_{Da}(s-\tau) \frac{\dot{h}(\tau)}{b} + \Phi_{Da} \frac{\ddot{w}(\tau)}{b} \right) \, d\tau$$

(5.14)
\[M_L = \frac{1}{2} \rho_u^2 b \frac{d c_M}{d \alpha} \left|_{\alpha=0} \int_{-\infty}^{\alpha} \left(\Phi_M(s-\tau)\dot{\alpha} + \Phi_M(s-\tau)\ddot{h} \right) \frac{1}{b} d\tau \right. \]
\[+ \left. \Phi_M \ddot{w} \right|_{s=0} \int_{-\infty}^{s} \left(\Phi_M(s-\tau)\dot{\alpha} + \Phi_M(s-\tau)\ddot{h} \right) \frac{1}{b} d\tau \]

(5.15)

Diese Formeln werden in dieser Form von zahlreichen Autoren, wie CARACOGLIA [18], SCANLAN ET AL [87], DOWELL [31] etc. mit einem Verweis auf Bisplinghoff et al [10] und Theodorsen [109] angegeben. Mit "\(\cdot \)\" wird hier die Ableitung nach der dimensionslosen Zeit \(s \) bezeichnet, siehe auch Gleichung 3.10. Die Funktionen \(\Phi_{ij}, i = D, A, M; j = w, h, \alpha \) werden charakteristische Übergangsfunktionen genannt. Die Steigung der stationären Luftkraftbeiwerte bei horizontaler Anströmung ist bei beliebigen Querschnittsformen ein wichtiger quantitativer Einflussfaktor. Da der Steigungsfaktor \(\frac{dc}{d\alpha} \) in Gleichung 5.13 bei horizontaler Anströmung bei den untersuchten Querschnitten annähernd gleich Null ist, wird dieser Freiheitsgrad nicht weiter untersucht.

Die Steigungsfaktoren der stationären Luftkraftbeiwerte einer ebenen unendlich dünnen Platte betragen im Nullpunkt des Anstellwinkels nach Potentialtheorie

\[\frac{dc_D}{d\alpha} = 2\pi = 6.2832 \]
(5.16)

\[\frac{dc_M}{d\alpha} = \frac{\pi}{2} = 1.5708 \]
(5.17)

Die numerisch ermittelten Steigungsfaktoren sind für jeden numerisch untersuchten Querschnitt im Anhang A angegeben, die experimentell ermittelten in Anhang B.

In Abbildung 5.2 sind die Zeitverläufe der bewegungsinduzierten Luftkräfte für verschiedene Windgeschwindigkeiten aufgetragen. Der Berechnung liegen die Strukturparameter des Datensatzes 2 zugrunde. Die Bewegungsgleichungen 5.14 und 5.15 wurden mit dem Prediktor-Korrektorverfahren gelöst. Das Verfahren ist im Anhang D beschrieben. Die kritische Windgeschwindigkeit \(u_{krit} = 43 \, \text{m/s} \) wurde nach der in Abschnitt 4.5 beschriebenen Frequenzbereichsmethode bestimmt. Wie erwartet, liegt im Grenzfall eine harmonische Schwingung konstanter Amplitude vor. Die Zeitverläufe der bewegungsinduzierten Luftkräfte im unterkritischen Fall \((u_{krit} = 35 \, \text{m/s}) \) und im überkritischen Fall \((u_{krit} = 45 \, \text{m/s}) \) sind ebenfalls dargestellt. Im unterkritischen Fall klingen die Schwingungen ab. Die Vertikalbewegung \(h \) schwingt in einem Einschwingbereich zunächst in allen drei Fällen in der Frequenz des Biegeastes \(\omega_{b,}\alpha \). Diese Schwingung wird stark gedämpft und klingt schnell ab. Im weiteren Zeitverlauf geht die Schwingung in die höherfrequente Schwingung des Torsionsastes über.
Abbildung 5.2: Zeitverläufe der bewegungsinduzierten Luftkräfte im unterkritischen, kritischen und überkritischen Strömungszustand mit der analytischen Lösung der unendlich dünnen Platte

5.3 Berechnung der charakteristischen Übergangsfunktionen aus den Flatterderivativa für beliebige Querschnitte

Theodorsen verwendet dieselbe Zirkulationsfunktion $C = F + iG$ für alle vier komplexen Flatterderivativa tragflügelähnlicher Profile. Um das unterschiedliche aerodynamische Verhalten von nicht tragflügelähnlichen Profilen wiedergeben zu können, ist es jedoch sinnvoll unabhängige profilpezifische Zirkulationsfunktionen für alle vier
Flatterderivativa einzuführen:

\[C_{hh} = F_{hh} + iG_{hh} \] \hspace{1cm} (5.18)
\[C_{ha} = F_{ha} + iG_{ha} \] \hspace{1cm} (5.19)
\[C_{ah} = F_{ah} + iG_{ah} \] \hspace{1cm} (5.20)
\[C_{aa} = F_{aa} + iG_{aa} \] \hspace{1cm} (5.21)

Die Flatterderivativa lassen sich entsprechend den Gleichungen 3.18 bis 3.20 nach Einführung getrennter Zirkulationsfunktionen auch wie folgt darstellen:

\[c'_{hh} = 1 + \frac{2}{k}G_{hh} \] \hspace{1cm} (5.22)
\[c''_{hh} = -\frac{2}{k}F_{hh} \] \hspace{1cm} (5.23)
\[c'_{ha} = \frac{1}{k}(G_{ha} - \frac{2}{k}F_{ha}) \] \hspace{1cm} (5.24)
\[c''_{ha} = -\frac{1}{k}(F_{ha} + \frac{2}{k}G_{ha} + 1) \] \hspace{1cm} (5.25)
\[c'_{ah} = -\frac{1}{k}G_{ah} \] \hspace{1cm} (5.26)
\[c''_{ah} = \frac{1}{k}F_{ah} \] \hspace{1cm} (5.27)
\[c'_{aa} = -\frac{1}{2k}G_{aa} + \frac{1}{k^2}F_{aa} + \frac{1}{8} \] \hspace{1cm} (5.28)
\[c''_{aa} = \frac{1}{2k}(F_{aa} - 1) + \frac{1}{k^2}G_{aa} \] \hspace{1cm} (5.29)

Mit Hilfe dieser Formeln können Näherungslösungen für \(F_{ij} \) und \(G_{ij} \), \(j = h, a \) mittels gängiger Optimierungsverfahren bestimmt werden. Im Anhang A sind für jedes Profil die Parameter der jeweiligen Näherungsfunktionen \(\tilde{F}_{ij} \) und \(\tilde{G}_{ij} \) für die Jones-Formel angegeben. Diese Parameter können entweder für eine Zeitbereichssimulation nach den Gleichungen 5.14 und 5.15 oder als Näherungsfunktion für die Flatterderivativa im Frequenzbereich zur Bestimmung der kritischen Windgeschwindigkeit nach Abschnitt 4.5 verwendet werden.

Aus den inversen Fouriertransformationen der profilspezifischen Zirkulationsfunktionen \tilde{F}_{ij} und \tilde{G}_{ij} lassen sich entsprechend Gleichung 5.7 profilspezifische Übergangsfunctionen bestimmen.

Die Parameter der numerisch ermittelten profilspezifischen Übergangsfunctionen sind für jeden numerisch untersuchten Querschnitt im Anhang A angegeben, die experimentell ermittelten in Anhang B.

Die im Anhang A für jede Näherungslösung angegebene Residualnorm r_{ik} ist die quadratische Länge des Fehlervektors und berechnet sich für die vier komplexen Flatterderivativum wie folgt:

\[
\begin{align*}
 r_{ik} &= \sum_{j=1}^{n} r_{ik}(j) \quad \text{mit} \quad i, k = h, \alpha \\
 r_{hh} &= \sqrt{(1 + \frac{2}{k}\tilde{G}_{hh} - \tilde{c}_{hh})^2 + (-\frac{2}{k}\tilde{F}_{hh} - \tilde{c}_{hh})^2} \\
 r_{ah} &= \sqrt{(\frac{1}{k}\tilde{G}_{ah} - \tilde{c}_{ah})^2 + (\frac{1}{k}\tilde{F}_{ah} - \tilde{c}_{ah})^2} \\
 r_{ha} &= \sqrt{(\frac{1}{k}\tilde{G}_{ha} - \frac{2}{k}\tilde{F}_{ha} - \tilde{c}_{ha})^2 + (\frac{1}{k}(\tilde{F}_{ha} + \frac{2}{k}\tilde{G}_{ha} + 1) - \tilde{c}_{ha})^2} \\
 r_{aa} &= \sqrt{(\frac{1}{2k}\tilde{G}_{aa} + \frac{1}{k^2}\tilde{F}_{aa} + \frac{1}{8} - \tilde{c}_{aa})^2 + (\frac{1}{2k}(\tilde{F}_{aa} - 1) + \frac{1}{k^2}\tilde{G}_{aa} - \tilde{c}_{aa})^2}
\end{align*}
\]

n ist die Anzahl der angenäherten Datenpunkte. r_{ik} ist die quadratische Summe aller Abweichungen des Betrages der komplexen Zahl c_{ij} für n Datenpunkte. In der Regel liegen n = 10 Datenpunkte für jedes Flatterdervativum der Berechnung zugrunde. Ziel der Approximation ist es, r_{ik} zu minimieren.

Desweiteren weichen die Steigungen der Luftkraftbeiwerte in Abhängigkeit vom Anstellwinkel $dcL/d\alpha$ und $dcM/d\alpha$ für Brückenprofile mit endlicher Schlankheit von den theoretisch hergeleiteten Steigungen ab. Es ist deshalb sinnvoll, hierfür ebenfalls numerisch oder experimentell ermittelte Werte zu verwenden. Im Rahmen dieser Arbeit sind diese für alle untersuchten Profile numerisch (siehe Anhang A) und experimentell (siehe Tabelle 8.3) ermittelt worden.
Kapitel 6

Grundlagen der Modellähnlichkeit bei numerischer Simulation und Versuch

6.1 Einleitung

6.2 Geometrische und dynamische Ähnlichkeit

Ist das Verhältnis korrespondierender Längen konstant, spricht man von geometrischer Ähnlichkeit. Beispielsweise muss für den Vergleich von zwei Brückenquerschnitten gelten:

\[
\frac{\text{Höhe}}{\text{Breite}} = \frac{H_1}{B_1} = \frac{H_2}{B_2} \quad (6.1)
\]

Die Ähnlichkeitskennzahl \(\lambda_L \) ist der Längenmaßstab

\[
\lambda_L = \frac{B_2}{B_1} \quad (6.2)
\]

Alle numerischen Berechnungen wurden in dieser Arbeit mit einem Profil der Breite \(B = 1 \) m durchgeführt. Die Modelle waren bei den im Wasserkanal durchgeführten Versuchen 200 mm breit (siehe Abschnitt 8.2), bei den Windkanalversuchen 300 mm breit (siehe Abschnitt 8.3). Somit beträgt der experimentelle Modellmaßstab im Falle der Brücke über den Großen Belt mit einer Breite des Prototyps von 31 m im Wasserkanal \(\lambda_L = 155 \), beim Versuch im Windkanal \(\lambda_L = 103.3 \). Der numerische Vergleichsmaßstab bei den Versuchen im Wasserkanal beträgt lediglich 1:31. Es wird vorausgesetzt, dass die Größe des Modellmaßstabs keinen Einfluss auf die Ergebnisse hat, wenn die folgend beschriebene dynamische Ähnlichkeit erfüllt ist.

Dynamische Ähnlichkeit ist gegeben, wenn zwei Konfigurationen bei vorgegebener geometrischer Ähnlichkeit und Befriedigung der zeitlichen Ähnlichkeit ähnliche Strömungskräfte aufweisen. Dies ist der Fall, wenn das Verhältnis der unterschiedlichen Kräfte, die auf korrespondierende Fluidteilchen wirken, gleich ist. Zu den auf ein Fluidteilchen wirkenden Kräften in geschlossenen Systemen ohne freie Oberflächen gehören Trägheitskräfte \(f_T \), Zähigkeitskräfte \(f_\nu \) und Druckkräfte \(f_D \). Dynamisch ähnlich heißt also:

\[
\lambda_F = \frac{f_{T_1}}{f_{T_2}} = \frac{f_{\nu_1}}{f_{\nu_2}} = \frac{f_{D_1}}{f_{D_2}} \quad (6.3)
\]

Formt man diese Gleichung um, erkennt man, dass auch die Quotienten zweier Kräfte unterschiedlicher Ursache in Modell und Natur gleich sind, z.B

\[
\frac{f_{T_1}}{f_{\nu_1}} = \frac{f_{T_2}}{f_{\nu_2}} \quad etc. \quad (6.4)
\]

In der Simulation in einem anderen Maßstab als im Original müssen die Maßstäbe für die physikalischen Grundeinheiten Länge, Zeit und die davon abgeleiteten Maßstäbe für Kräfte, Geschwindigkeit, Beschleunigung, Volumen, Fläche, Dichte, etc. berücksichtigt werden, um die Erkenntnisse auf das Original übertragen zu können. Da das Newtonsche Grundgesetz \(F_i = m_i a_i \) erfüllt werden muss, können nur drei Größen unabhängig gewählt werden.
In den Simulationen müssen außerdem die Navier-Stokes-Gleichungen erfüllt sein

\[f_i - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j} = \frac{du_i}{dt} \]

(6.5)

mit \(i, j = x, y, z \). Hierin ist \(\rho \) die Dichte und \(\nu \) die kinematische Zähigkeit des Fluids.

Durch zwei charakteristische Größen wie die Profilänge \(B \) und die Anströmgeschwindigkeit \(u_\infty \) lassen sich die physikalischen Größen der Navier-Stokes-Gleichungen auf die folgenden dimensionslosen Größen reduzieren

\[x_i^* = x_i / B \]

(6.6)

\[u_i^* = u_i / u_\infty \]

(6.7)

\[t^* = t u_\infty / B \]

(6.8)

\[p^* = p / \rho u_\infty^2 \]

(6.9)

Mit diesen dimensionslosen Größen lautet die Navier-Stokes-Gleichung

\[f_i - \frac{u_\infty^2}{L} \frac{\partial p^*}{\partial x_i} + \nu \frac{u_\infty}{L^2} \frac{\partial^2 u_i^*}{\partial x_j^* \partial x_j^*} = \frac{du_i^*}{dt^*} \]

(6.10)

Teilt man die Gleichung durch den Koeffizienten des Trägheitsterms, erhält die Gleichung die folgende Form

\[f_i \frac{L}{u_\infty^2} - \frac{\partial p^*}{\partial x_i^*} + \nu \frac{u_\infty}{L} \frac{\partial^2 u_i^*}{\partial x_j^* \partial x_j^*} = \frac{du_i^*}{dt^*} \]

(6.11)

Unter der Voraussetzung, dass als Massenkraft lediglich die Schwerkraft \(g \) wirkt, reduziert sich \(f_i \) auf \(f_i = 0 \). Nun lassen sich die verbleibenden Koeffizienten zu den zwei wesentlichen Kenngrößen der dynamischen Ähnlichkeit zusammenfassen, der Froudezahl

\[Fr = \frac{u_\infty}{\sqrt{gL}} = \sqrt{\frac{\text{Trägheitskräfte}}{\text{Gravitationskräfte}}} \]

(6.12)

und der Reynoldszahl

\[Re = \frac{u_\infty L}{\nu} = \frac{\text{Trägheitskräfte}}{\text{Zähigkeitskräfte}} \]

(6.13)

So ist die Froudezahl durch das Teilen des Koeffizienten des Trägheitsterms durch den des Schwerkraftterms entstanden. Die Reynoldszahl entsteht aus dem Quotienten der Koeffizienten von Trägheitsterm und Zähigkeitsterm. Mit diesen beiden dimensionslosen Kennzahlen läßt sich die Navier-Stokes-Gleichung auch in der folgenden dimensionslosen Form ausdrücken

\[\frac{1}{Fr^2} \frac{\partial p^*}{\partial x_i^*} + \frac{1}{Re} \frac{\partial^2 u_i^*}{\partial x_j^* \partial x_j^*} = \frac{du_i^*}{dt^*} \]

(6.14)
Sind diese beiden Kennzahlen in zwei Konfigurationen gleich, liegt dynamische Ähnlichkeit vor. Sollen die dynamischen Ähnlichkeitsforderungen in Form der Froudezahl und in Form der Reynoldszahl erfüllt werden, muss auch die Viskosität maßstäblich angepasst werden. Dies ist im Modellversuch selten möglich, da zumeist nur die Fluide Luft und Wasser zur Verfügung stehen. Deshalb legt man abhängig von der Problemstellung fest, welche der beiden dynamischen Ähnlichkeitsforderungen erfüllt werden muss. Da der Einfluss der Schwerekräfte der Luft bei Profilumströmung vernachlässigt werden kann, ist nur die Ähnlichkeitsforderung entsprechend der Reynoldszahl, also die Wahl der gleichen Reynoldszahl im Versuch wie in der Natur, einzuhalten [106].

Die Reynoldszahl ist ein Maßstab für die Stabilität einer Strömung. Aus ihr lässt sich auf das Verhalten der Strömung bezüglich einer Störung schließen. Ist die Reibungskraft in der Strömung sehr groß, wird die aus der Störung entstehende Geschwindigkeitsschwankung schnell abgebaut. Sind die Trägheitskräfte dagegen groß im Verhältnis zu den Reibungskräften, breitet sich die Störung stromabwärts weiter aus. Strömungen mit großer Reynoldszahl sind also weniger stabil als Strömungen mit kleiner Reynoldszahl.

Zur Beschreibung der Bewegung des Brückenquerschnitts in Querrichtung und der daraus entstehenden Wirbelschleppe wurde bereits in Abschnitt 3.2.3 die reduzierte Frequenz k als fundamentaler Ähnlichkeitsparameter der instationären Aerodynamik eingeführt. Eine weitere Ähnlichkeitskennzahl, welche bereits in Abschnitt 2.3 eingeführt wurde, ist die Strouhalzahl St. Diese Zahl charakterisiert die profilbedingte Wirbelablösefrequenz des Querschnittes. Bei üblichen Brückenbauwerken ist die Geschwindigkeit, bei der es zu harmonischen Schwingungen aus profilbedingter Wirbelablösung kommt, zumeist wesentlich niedriger als kritische Windgeschwindigkeit, bei der es zu bewegungsinduzierten Flatterschwingungen kommen kann. Somit spielt die Größe der Strouhalzahl bei der Untersuchung von Flatterschwingungen nur eine untergeordnete Rolle. Die Rolle der geometrisch bedingten Wirbelablösung und damit der Einfluss der Strouhalzahl wird in Kapitel 10 ausführlicher diskutiert.

6.3 Vergleichbarkeit von Gasströmungen und Wasserströmungen

Gasströmungen besitzen eine wesentlich stärkere Abhängigkeit der Dichte vom Druck als Wasserströmungen. Luft ist etwa 20000 mal so kompressibel wie Wasser. Bis zu einer bestimmten Strömungsgeschwindigkeit kann Gas allerdings auf die gleiche Weise modelliert werden wie Wasser, nämlich als inkompressibles Fluid.

Eine weitere wichtige Ähnlichkeitskennzahl in der Gasdynamik ist die Mach-Zahl. Die Machzahl gibt das Verhältnis der Strömungsgeschwindigkeit zur Schallgeschwindigkeit an:

$$Ma = \frac{u_\infty}{c} \quad (6.15)$$
Strömungen mit einer Machzahl \(Ma < 1 \) bezeichnet man als Unterschallströmungen. Bei Unterschallströmungen \(Ma > 0,2 \) ist die Strömung kompressibel. Die Schallgeschwindigkeit beträgt in der Luft \(c = 343,2 \) m/s [70]. Das heißt, dass bei Geschwindigkeiten ab ca. 70 m/s die Strömung als kompressibel anzunehmen ist. Die Dichteänderung beträgt dann ca. 2 %. Die Strömungsgeschwindigkeit entspricht ca. der doppelten Windgeschwindigkeit in der atmosphärischen Grenzschicht, die zur Bemessung der Brücke angenommen wird, also ist im Bemessungsfall die Machzahl \(Ma < 0,1 \). Deshalb wurde für die hier behandelten Strömungszustände für die numerische Simulation Inkompressibilität der Luft angenommen.
Kapitel 7

Die Modellierung von Luftkräften mittels numerischer Strömungsmechanik

7.1 Stand der Forschung

Shirai [97] berechnet ebenfalls Flatterderivate mit einem zweidimensionalen numerischen Modell. Er verwendet die Reynoldsgleichungen, die auf einer gemittelten

Jeong und Kwon [51] beschreiben ebenfalls ein vergleichbares Verfahren, wobei hier aber die Reynoldsähnlichkeit (siehe Abschnitt 6.1) deutlich verletzt wird. Ihre Simulationen wurden mit Reynoldszahlen von 400 bis 2400 durchgeführt, die mindestens um Faktor 10^3 unter den im Rahmen dieser Arbeit durchgeführten Simulationen und mindestens um Faktor 10^4 unter den Reynoldszahlen der Originalbrücken liegen. Sie berechnen Flatterderivate von vier unterschiedlichen Querschnitten: zwei Rechteckquerschnitten mit den Seitenverhältnissen $H:B = 1:10$ und $1:20$, dem Querschnitt der Tacoma Brücke und einem trapezähnlichen Vollquerschnitt. Die Ergebnisse zeigen durchweg gute Übereinstimmung mit den zum Vergleich herangezogenen experimentellen Werten. Lediglich beim Flatterderivativum A^*_2 des Profils der Tacoma Narrows Brücke (TC) liegt der Nulldurchgang bei einer zweifach höheren reduzierten Geschwindigkeit U_{red} als in den angegebenen experimentellen Ergebnissen, in diesem Fall $U_{red} = 4$, was auch im Rahmen dieser Arbeit beobachtet wurde. Die Forderung nach Einhaltung der Reynoldsähnlichkeit scheint deshalb von untergeordneter Bedeutung, was durch die experimentellen Ergebnisse in dieser Arbeit, siehe Kapitel 8, bestätigt wird.
7.2 Strömungsmechanische Grundlagen

7.2.1 Einführung

Betrachtet wird eine Strömung in einem Raum Ω. Eine Strömung wird durch die zeitlich veränderliche dreidimensionale Verteilung der Geschwindigkeit $v: \Omega \times [0, t_{\text{max}}] \rightarrow \mathbb{R}^3$ und des Druckes $p: \Omega \times [0, t_{\text{max}}] \rightarrow \mathbb{R}$ charakterisiert (Abbildung 7.1). Die Geschwindigkeit ist eine dreidimensionale vektorielle Größe, während der Druck eine skalare Größe ist. Für die Modellierung einer zeitlich veränderlichen zweidimensionalen Strömung, wie in dieser Arbeit, sind drei Bestimmungsgleichungen für die drei Unbekannten (zwei Geschwindigkeitskomponenten und der Druck) erforderlich. Zur Beschreibung des Gesamtgebietes wird das Gebiet diskretisiert und die Unbekannten müssen für jedes diskrete Element bestimmt werden. Die Anzahl der Unbekannten erhöht sich somit mit dem Diskretisierungsgrad.

Durch die Annahme der Inkompressibilität wird die Dichte des Fluids im ganzen Gebiet als konstant vorausgesetzt.

Bei der Euler’schen Betrachtungsweise wird das Geschwindigkeitsfeld als Ganzes zu einer bestimmten Zeit t betrachtet. Man spricht auch von einer Momentaufnahme des gesamten Strömungsfeldes oder einer Feldbetrachtung der Strömung.
Das Geschwindigkeitsfeld wird durch den Geschwindigkeitsvektor $\mathbf{v}(t) = (u, v, w)$ mit den Koordinaten

\begin{align*}
 u &= u(x, y, z, t), \\
v &= v(x, y, z, t), \\
w &= w(x, y, z, t)
\end{align*}

im kartesischen Koordinatensystem beschrieben. Die Geschwindigkeitsänderung, welcher ein Beobachter an einem Raumpunkt wahrnimmt, bezeichnet man als substantielle Beschleunigung

\begin{equation}
 \frac{D\mathbf{v}}{Dt} = v \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \frac{\partial v}{\partial t} \tag{7.4}
\end{equation}

wobei (2) die konvektive Beschleunigung (infolge Ortsänderung) und (3) die lokale Beschleunigung bezeichnet.

Bei der LAGRANGE’schen Betrachtungsweise wird die Bahnlinie eines Teilchens verfolgt, das sich zum Zeitpunkt t_0 am Ort P_0 mit den Koordinaten $(x_0, y_0, z_0)^T$ befindet. Die Bahnlinie wird durch den zeitabhängigen Ortsvektor $\mathbf{r}(t) = (x, y, z, t)$ mit den Komponenten

\begin{align*}
x &= x(x_0, y_0, z_0, t), \\
y &= y(x_0, y_0, z_0, t), \\
z &= z(x_0, y_0, z_0, t).
\end{align*}

beschrieben. Somit ergeben sich für den Ausgangspunkt P_0 die Koordinaten

\begin{align*}
x_0 &= x(x_0, y_0, z_0, 0), \\
y_0 &= y(x_0, y_0, z_0, 0), \\
z_0 &= z(x_0, y_0, z_0, 0).
\end{align*}

Die Geschwindigkeit ist die erste Ableitung des Ortsvektors \mathbf{r}

\begin{equation}
 \mathbf{v} = \frac{\partial \mathbf{r}}{\partial t} = \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial t} \\ \frac{\partial z}{\partial t} \end{pmatrix} \tag{7.8}
\end{equation}

Der Geschwindigkeitsvektor als erste Ableitung von \mathbf{r} nach der Zeit tangiert die Bahnlinie. Die Beschleunigung ist die zweite Zeitableitung.
7.3 Die Navier-Stokes-Gleichungen

Zur Beschreibung des verwendeten numerischen Modells sei eine kurze Beschreibung der numerischen und strömungsmechanischen Grundlagen erlaubt. Gute Darstellungen dieser Grundlagen finden sich in Ferziger, Peric [34], Griebel [43] und Fletcher [36], [37].

In den für die Bemessung von Brückenquerschnitten relevanten Geschwindigkeitsbereich kann man aufgrund der niedrigen Mach-Zahl ($Ma \ll 1$) von inkompressibler Strömung ausgehen, siehe hierfür auch Abschnitt 6.1.

Die Erhaltungsgleichung der Masse, hier in integraler Form dargestellt,

$$ \int_{\Omega} \frac{\partial \rho}{\partial t} d\Omega + \int_{S} \rho \mathbf{v} \cdot \mathbf{n} dS = 0 \quad (7.9) $$

beschreibt das Gleichgewicht zwischen der zeitlichen Änderung der Masse im Kontrollgebiet Ω und dem Massendurchfluss durch das Kontrollgebiet. Eine gebräuchliche Bezeichnung lautet Kontinuitätsgleichung. Durch Umformung folgt aus Gleichung 7.9 für inkompressible Strömungen $\frac{\partial \rho}{\partial t} = 0$. Der erste Term beschreibt die lokale Änderung und der zweite Term die konvektiven Änderungen, d.h. die Änderungen in der jeweiligen Strömungsrichtung. S bezeichnet die Fläche des Gebietsrandes, \mathbf{n} ist der Einheitsvektor normal zum Gebietsrand.

Die Impulserhaltungsgleichungen, hier ebenfalls in integraler Form,

$$ \int_{\Omega} \frac{\partial \rho \mathbf{v}}{\partial t} d\Omega + \int_{S} \rho \mathbf{v} \mathbf{v} \cdot \mathbf{n} dS = \int_{S} \mathbf{T} \cdot \mathbf{n} dS + \int_{\Omega} \mathbf{f}_{b} d\Omega \quad (7.10) $$

beschreiben das Kräftegleichgewicht an einem Volumenelement entsprechend dem zweiten Newton’schen Gesetz. \mathbf{f}_{b} ist der Vektor der Massenkräfte und \mathbf{T} der CAUCHY-Spannungstensor. Die Massenkräfte sind beispielsweise Schwerkraft, Corioliskraft und Zentrifugalkräfte. Der Cauchy-Spannungstensor

$$ \mathbf{T} = - \left[p + 2 \mu (\text{div} \mathbf{v}) \right] \mathbf{I} + 2 \mu \mathbf{D}_{v} \quad (7.11) $$

mit

$$ \text{div} \mathbf{v} = \frac{du}{dx} + \frac{dv}{dy} + \frac{dw}{dz} \quad \text{und} \quad (7.12) $$

$$ \mathbf{D}_{v} = \frac{1}{2} \left[\frac{\partial v_{i}}{\partial x_{j}} + \frac{\partial v_{j}}{\partial x_{i}} \right] \quad (7.13) $$
werden die Spannungen aus Druck, Verformung und Zähigkeit zusammengefasst. \(\mu \) ist die Viskosität des Fluids, \(p \) der Druck. Diese Spannungen integriert über die Oberfläche \(S \) ergeben die resultierenden Druck-, Verformungs- und Zähigkeitskräfte. Die Darstellung 7.12 bezieht sich ausschließlich auf das kartesische Koordinatensystem. \(\mathbf{D} \) ist der Deformationstensor. Er fasst die zähigkeitsbedingten Deformationen des Fluids zusammen. Auf der Hauptachse des Spannungstensors stehen die Dehnungen des Volumenelementes und der Druck, also die auf die Normalenrichtung der Oberfläche bezogenen Spannungen.

Trifft das Fluid auf eine Querschnittsoberfläche, entstehen durch Druck und Zähigkeit parallel zur und normal auf die Oberfläche wirkende Kräfte.

Die Gesamtheit von Massenerhaltung und Impulserhaltung bezeichnet man als NAVIER-STOKES-Gleichungen.

7.4 Die Modellierung der Bewegung des Brückenquerschnittes

W enn das Koordinatensystem ortsfest ist und ein kartesisches Koordinatensystem vorliegt, ist die einzige Änderung in den Erhaltungsgleichungen die zusätzliche zu berücksichtigende, aus der Bewegung des Berechnungsgebiet resultierende, Relativgeschwindigkeit in den konvektiven Termen. Beispielhaft sei die Modellierung der Bewegung an der eindimensionalen Kontinuitätsgleichung beschrieben.

Die eindimensionale Kontinuitätsgleichung lautet in differenzieller Form

\[
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0 \quad (7.14)
\]

Integriert man diese Gleichung über ein Kontrollvolumen, dessen Ränder sich bewegen, zum Beispiel von einer Position \(x_1(t) \) zu einer Position \(x_2(t) \), erhält man

\[
\int_{x_1(t)}^{x_2(t)} \frac{\partial \rho}{\partial t} \, dx + \int_{x_1(t)}^{x_2(t)} \frac{\partial (\rho u)}{\partial x} \, dx = 0 \quad (7.15)
\]

Unter Benutzung von \cite{14}, S. 476, kann diese Gleichung auch in folgender Form geschrieben werden:

\[
\frac{d}{dt} \int_{x_1(t)}^{x_2(t)} \rho \, dx - \left[\rho_2 \frac{dx_2}{dt} - \rho_1 \frac{dx_1}{dt} \right] + \rho_2 u_2 - \rho_1 u_1 = 0 \quad (7.16)
\]

Die Ableitung \(\frac{d}{dt} \int \rho \, dx \) beschreibt die Geschwindigkeit, mit der sich das Berechnungsgebiet bewegt. Die Terme in der Klammer und hinter der Klammer sind deshalb gleich und heben sich gegenseitig auf.
Die Strömungsgeschwindigkeit sei unidirektional mit \(\mathbf{v}^T = [u \ 0 \ 0] \). Die Geschwindigkeit des Berechnungsgebietes sei als \(u_b \) bezeichnet.

\[
\int_{x_1(t)}^{x_2(t)} \frac{\partial}{\partial t} \rho \, dx + \int_{x_1(t)}^{x_2(t)} \frac{\partial}{\partial x} \left[\rho (u - u_b) \right] \, dx = 0 \tag{7.17}
\]

Ist die Geschwindigkeit \(u_b \) gleich der Strömungsgeschwindigkeit \(u \), entspricht Gleichung 7.17 der Lagrange'schen Kontinuitätsgleichung (\(\frac{dm}{dt} = 0 \)). Ist die Geschwindigkeit \(u_b \) gleich null, entspricht die Gleichung der Euler'schen Kontinuitätsgleichung. Man bezeichnet diese Betrachtungsweise deshalb auch als "Arbitrary Lagrangean Eulerian" (ALE-)Betrachtungsweise. Die ALE-Betrachtungsweise ist der gebräuchlichste Ansatz zur Modellierung von Fluid-Struktur-Interaktion.

Die Massenerhaltung wird durch das sogenannte "Space Conservation Law" (SCL) erfüllt:

\[
\frac{d}{dt} \int_{\Omega} \rho \, d\Omega - \int_{S} \mathbf{v} \cdot \mathbf{n} \, dS = 0 \tag{7.18}
\]

Die Massenerhaltung muss damit auch erfüllt sein, wenn das Kontrollvolumen seine Gestalt oder seine Position ändert. Man kann dieses Gesetz auch als Massenerhaltung bei einer Anströmungsgeschwindigkeit gleich null interpretieren.

Auf die gleiche Weise müssen die konvektiven Terme der Impulsgleichung 7.10

\[
\frac{\partial}{\partial t} \int_{\Omega} \rho \mathbf{v} \, d\Omega + \int_{S} \rho (\mathbf{v} - \mathbf{v}_b) \mathbf{v} \cdot \mathbf{n} \, dS = \int_{S} \mathbf{T} \cdot \mathbf{n} \, dS + \int_{\Omega} f_b \, d\Omega \tag{7.19}
\]

und der Turbulenzgleichungen (hierfür siehe den folgenden Abschnitt) erweitert werden, damit Impulserhaltung und die Zusatzgleichungen für Turbulenz für ein bewegtes Gitter erfüllt werden.

7.5 Turbulenzmodellierung

7.5.1 Laminare und turbulente Strömung

Bei einer gleichförmigen Strömung ohne starken Austausch von Fluidteilchen quer zur Strömungsrichtung spricht man von laminerer Strömung. Bis zu einer Reynoldszahl von ca. 5 \(\cdot \) 10\(^5\) sind Strömungen laminar. Oberhalb dieser Zahl gewinnt Turbulenz in der Strömung zunehmend an Einfluss.
Der Umschlag von laminarer (=gleichförmiger) zu turbulenter (=ungleichförmiger) Strömung erfolgt im Falle der Umströmung einer flachen Platte bei einer lauflängenbezogenen Reynoldszahl von ca. $3.5 \cdot 10^5$. Diese Zahl ist als Stabilitätsgrenze zu verstehen, d.h. erst eine kleine Störung der Strömung führt zu diesem Wechsel des Strömungszustands. Eine solche Störung kann zum Beispiel eine Wandrauhigkeit sein. Bei der Umströmung von Brückenprofilen erfolgt der Umschlag schon bei sehr geringen Windgeschwindigkeiten, so dass die Turbulenz modelliert werden muss.

Die meisten kommerziellen CFD-Programme ignorieren die Transition und modellieren entweder vollständig laminare oder vollständig turbulente Strömungen.

Charakteristisch für Turbulenz ist ihre Fähigkeit, das Fluid zu mischen. Dies bezieht sich nicht nur auf die Mischung eines oder mehrerer Fluid und ihrer Bestandteile, sondern auch im übertragenen Sinn auf den Impuls. Das zeigt sich darin, dass an umströmten Körpem die Wandschubspannungen in turbulenter Strömung sehr viel höher sind als in laminarer Strömung.

Die charakteristische Geschwindigkeit und die charakteristische Länge der größeren Wirbel sind von gleicher Größenordnung wie die Geschwindigkeit u_∞ und die Bezugsgröße der Hauptstromung B. Das bedeutet, dass bei großen Reynoldszahlen diese großen Wirbel durch Trägheitskräfte bestimmt werden und nicht durch Reibungskräfte. Man kann die großen Wirbel deshalb als vornehmlich reibungsfrei ansehen.

Die Struktur der größeren Wirbel ist überwiegend anisotrop und abhängig von der Strömungsrichtung. Gerade bei höheren Reynoldszahlen sind die Kleinstwirbel hochgradig isotrop, was aus dem diffusiven Charakter der Fluidzähigkeit resultiert.

In Abbildung 3.2 sind zwei großskalige Wirbel zu sehen. Man erkennt deutlich, wie sie in Stromungsrichtung durch die Hauptstromung deformiert werden. Diese Wirbel

7.5.2 Modellierung

Die Navier-Stokes-Gleichungen beschreiben die turbulente Strömung vollständig. Die vollständige Auflösung aller durch Turbulenz entstehenden Schwankungen durch die Navier-Stokes-Gleichungen ist zu aufwendig, um von den zur Verfügung stehenden Rechencapazitäten bewältigt zu werden. Stellt man diese Gleichungen so um, dass sie eine gemittelte Bewegung beschreiben, entstehen zusätzliche Terme, welche die turbulente Schwankungsbewegung beschreiben. Es kommen somit neue Unbekannte hinzu, für die neue Gleichungen eingeführt und gelöst werden müssen. Man spricht vom sogenannten “Schliessungsproblem”.

Diese zusätzlichen Gleichungen müssen den Zusammenhang zwischen der mittleren Geschwindigkeit und der turbulenten Schwankungsbewegung beschreiben.

Turbulenz kann auf verschiedene Weise numerisch modelliert werden. Man unterscheidet hier drei grundsätzliche Vorgehensweisen:

1) Die direkte numerische Simulation (DNS)
2) Die Large-Eddy Simulation (LES)
3) Die statistische Turbulenzmodellierung (RANS)

Die genaueste aber auch teuerste Methode ist die direkte numerische Simulation. Die billigste Methode ist die statistische Turbulenzmodellierung, wobei hier der Zeitgewinn durch höhere Ungenauigkeit erkauft wird. Die Large-Eddy Methode ist ein Kompromiss zwischen den beiden Methoden (Abb. 7.2).

Zeigt es sich durch den Vergleich mit Messungen, dass die Ergebnisse der statistischen Turbulenzmodellierung für die Ermittlung der instationären Strömungskräfte genau genug sind, gibt es keinen Grund, auf die teueren Verfahren zurückzugreifen.

Die direkte numerische Simulation

Die direkte numerische Simulation (DNS) ist die genaueste Methode zur Modellierung der Turbulenz. Hierbei werden die Navier-Stokes-Gleichungen vollständig und ohne zeitliche Mittelung gelöst. Dies erfolgt auf Kosten der zeitlichen und räumlichen
Abbildung 7.2: Vergleich der numerischen Methoden zur Turbulenzmodellierung

Die Large-Eddy Simulation

Die statistische Turbulenzmodellierung

Für viele Anwendungen kann es ausreichen, gemittelte Geschwindigkeiten und Kräfte zu betrachten.

Um das Schließungsproblem zu bewältigen, werden zusätzliche Gleichungen, zumeist ebenfalls partielle Differentialgleichungen, eingeführt. Sie werden zusätzlich zu den RANS-Gleichungen ("Reynolds-Averaged-Navier-Stokes") gelöst, also den NA-

Im Rahmen dieser Arbeit wird die Turbulenz mit einem statistischen Turbulenzmodell, dem k-ϵ-Modell beschrieben. Mit diesem Modell wird die turbulente Schwankungsbewegung nicht direkt berechnet, sondern ihre Auswirkungen auf die Strömungsverhältnisse, in diesem Fall auf Geschwindigkeit und Druck, modelliert. Dies erfolgt in Form einer zusätzlichen Viskosität. Dieses wird im folgenden Abschnitt näher beschrieben.

7.5.3 Das k-ϵ-Modell

Das k-ϵ-Modell modelliert die dynamischen Eigenschaften der Turbulenz. Es werden zwei zusätzliche Erhaltungsgleichungen eingeführt, eine für die kinetische Energie k und eine für die turbulente Dissipation ϵ. Deshalb gehört das k-ϵ-Modell zu den Zwei-Gleichungsmodellen. Die in dieser Arbeit verwendete globale Ähnlichkeitszahl k stimmt in der Bezeichnung mit der für die turbulente kinetische Energie überein. Da aber in der Strömungsmechanik die Bezeichnung k für die turbulente kinetische Energie eine ebenso fest gebräuchliche Bezeichnung ist, wird in diesem Kapitel diese Bezeichnung beibehalten, insbesondere wegen des feststehenden Begriffs des k-ϵ-Modells.

Dafür werden nach Reynolds die turbulente Geschwindigkeit \mathbf{v}_T und der turbulente Druck p_T in eine gemittelte Strömung (\mathbf{v}, p) und eine turbulente Schwankungsbewegung (\mathbf{v}', p') zerlegt.

\[
\mathbf{v}_T = \mathbf{v} + \mathbf{v}' = \begin{pmatrix} u \\ v \\ w \end{pmatrix} + \begin{pmatrix} u' \\ v' \\ w' \end{pmatrix}
\]
\[\text{(7.20)}\]

\[
p_T = p + p'
\]
\[\text{(7.21)}\]

Das zeitliche Mittel von \mathbf{v}' und p' ist definitionsgemäß gleich null. Reynolds schlug vor, die gemittelten quadratischen Schwankungen, die bei der zeitlichen Mittelung des konvektiven Terms nicht verschwinden, als zusätzliche Normal- und Schubspannungen zu interpretieren. Diese zusätzlichen Spannungen werden auch als Scheinspannungen bezeichnet. Der Einfluss der Turbulenz wird so als eine zusätzliche Viskosität modelliert.
Die kinetische Energie wird analog zum Reynolds-Spannungsmodell in einen gemittelten und einen turbulenten Anteil aufgeteilt:

\[k(t) = K + k \]

wobei \(K \) \(= \frac{1}{2}(u^2 + v^2 + w^2) \) die kinetische Energie der gemittelten Hauptströmung ist und \(k \) \(= \frac{1}{2}(u'\nu'^2 + v'\nu'^2 + w'\nu'^2) \) die turbulente kinetische Energie ist. Die zugehörige Dissipationsrate \(\epsilon \) beschreibt die Umwandlung von turbulenter kinetischer Energie \(k \) in innere Energie. Das heißt, dass der Verlust als Temperaturgewinn in die Energiegleichung wieder eingearbeitet werden muss. Da die Temperatur in diesem Fall die Strömung nicht beeinflusst, wird die Erhaltung der inneren Energie nicht weiter modelliert.

Die zwei zusätzlichen Transportgleichungen für die turbulente kinetische Energie \(k \)

\[
\frac{d}{dt} \int_V \rho k dV + \int_S \rho k (\mathbf{v} - \mathbf{v}_b) \cdot \mathbf{n} dS = \int_S \left(\mu + \frac{\mu_t}{\sigma_k} \right) \text{grad} k \cdot \mathbf{n} dS + \int_V (T_t : \text{grad} \mathbf{v} - \rho \epsilon) dV
\]

und die zugehörige Dissipationsrate \(\epsilon \)

\[
\frac{d}{dt} \int_V \rho \epsilon dV + \int_S \rho \epsilon (\mathbf{v} - \mathbf{v}_b) \cdot \mathbf{n} dS = \int_S \left(\mu + \frac{\mu_t}{\sigma_\epsilon} \right) \text{grad} \epsilon \cdot \mathbf{n} dS + \int_V \left(C_\mu (T_t : \text{grad} \mathbf{v}) - C_{\mu f} - C_{\epsilon} \rho \epsilon \right) dV
\]

müssen parallel zu den Erhaltungsgleichungen von Masse und Impuls gelöst werden. Die Wirbelviskosität \(\mu_t(x, y) \) ist keine Stoffkonstante, sondern eine Funktion in Abhängigkeit des Ortes. Im \(k-\epsilon \)-Modell berechnet sich die Wirbelviskosität

\[
\mu_t = \rho C_\mu \frac{k^2}{\epsilon}
\]

aus den jeweiligen Werten der zusätzlichen Unbekannten \(k \) und \(\epsilon \).

Die Anzahl der Unbekannten erhöht sich pro Berechnungspunkt damit auf fünf. Die Verknüpfung dieser beiden zusätzlichen Gleichungen mit den RANS-Gleichungen erfolgt, indem die molekularen Viskosität \(\mu \) gegen die effektive Viskosität \(\mu_{eff} \) ausgetauscht wird.

Die Konstanten des \(k-\epsilon \)-Modells lauten \(C_\mu = 0,09, C_{\epsilon 1} = 1,44, C_{\epsilon 2} = 1,92, \sigma_k = 1,0 \) und \(\sigma_\epsilon = 3,42 \).

In dieser Arbeit wird das RNG-\(k-\epsilon \)-Modell (RNG = ”renormalisation group method”) verwendet, welches eine Modifikation des klassischen \(k-\epsilon \)-Modells ist. Die Erhaltungsgleichung der Dissipationsrate wird um einen weiteren Term ergänzt, welcher den Einfluss der Versetzungen der Hauptströmung auf \(\epsilon \) modellieren soll. Hierfür wird ein weiterer Quellterm in Gleichung 7.24 eingeführt [49]

\[
S_\epsilon = -\int_V C_\mu f^3 \left(1 - \frac{1}{1 + C_{\epsilon f} f^3} \right) \frac{\rho \epsilon^2}{k} dV \text{ wobei } f = \frac{k}{\epsilon}, S = \sqrt{2 D_\epsilon : D_\epsilon}
\]

76
mit der "rate of strain"

\[\dot{D}_v = \frac{1}{2} \left(\text{grad} \, v + (\text{grad} \, v)^T \right) \]

(7.27)

Die Konstanten des RNG-\(k \)-\(\epsilon \)-Modell lauten abweichend vom Standard-\(k \)-\(\epsilon \)-Modell [49]

<table>
<thead>
<tr>
<th>(C_\mu)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
<th>(C_5)</th>
<th>(C_6)</th>
<th>(\sigma_k)</th>
<th>(\sigma_\epsilon)</th>
<th>(\sigma_T)</th>
<th>(\sigma_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.085</td>
<td>1.42</td>
<td>1.68</td>
<td>1.42</td>
<td>-0.587</td>
<td>4.38</td>
<td>0.012</td>
<td>0.72</td>
<td>0.72</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Der Modellierungsfehler entsteht bei dem verwendeten \(k \)-\(\epsilon \)-Modell dadurch, dass von isotroper, gleichgewichtsnaher Turbulenz ausgegangen wird. Turbulenz ist aber nie isotrop. Zwar ist bei immer kleiner werdenden Wirbeln eine Tendenz zu Isotropie zu erkennen, aber Versuche [1] belegen, dass Turbulenz auch in kleineren Skalen anisotrop bleibt. Die Parameter des \(k \)-\(\epsilon \)-Modells sind außerdem in Versuchen gewonnen, deren Aufbau nicht mit der Umströmung stumpfer Körper, die in dieser Arbeit verwendet wurden, übereinstimmt. So kann der Turbulenzeinfluss nur näherungsweise erfasst werden.

Statistische Turbulenzmodelle wurden für stationäre Strömungen entwickelt. Wird eine deterministische Schwankung der Strömung modelliert, wie im Falle der harmonischen Brückenbewegung, muss die modellierte Frequenz weit genug vom modellierten Frequenzspektrum entfernt liegen. Rung [79] gibt für den notwendigen Abstand ein bis zwei Größenordnungen an. Die vorgegebenen Frequenzen liegen im Bereich von 0.2 bis 1 Hz, je nachdem, welcher Wert für die reduzierte Frequenz \(k \) angesetzt worden ist. Die Geschwindigkeit wurde bei 3 m/s für alle in Anhang A dokumentierten Simulationen konstant gehalten. In der vorliegenden Arbeit wurde lediglich diejenige instationäre Kraft quer zur Strömungsrichtung betrachtet, die genau die Frequenz der vorgegebenen Brückenbewegung besitzt. Instationäre Kraftkomponenten anderer Frequenzen wurden nicht betrachtet, so dass sich eine mögliche Unterdrückung dieser Komponenten durch die statistische Turbulenzmodellierung nicht auswirkt.
7.6 Simulationen mit Comet

7.7 Die Güteeigenschaften einer numerischen Berechnung

Je kleiner der Fehler der numerischen Berechnung ist, desto genauer ist die berechnete Lösung. Numerische Berechnungen produzieren die folgenden Fehler:

- Modellierungsfehler

Auch die ungenaue Wahl der Randbedingungen kann zu Modellierungsfehlern führen.

- Diskretisierungsfehler

 Als Diskretisierungsfehler bezeichnet man die Abweichungen zwischen mathematisch exakter und numerischer Lösung. Die Größe dieses Fehlers ist ein Merkmal für die Qualität der numerischen Lösung im mathematischen Sinne. Der Diskretisierungsfehler besteht aus drei Anteilen:
 1. Fehler bei der Ordnung der Approximationsansätze,
 2. zu grobe Elemente,
 3. und ungeeignete Form und Anordnung der Elemente.

- Iterationsfehler

 Als Iterationsfehler bezeichnet man den Fehler, der bei der Lösung der algebraischen Gleichung gemacht wird.

Alle diese Fehler müssen auf ein Minimum begrenzt werden. Hierbei spielen die Iterationsfehler erfahrungsgemäß die geringste Rolle. Der Iterationsfehler wird durch die Modellierungsfehler und Diskretisierungsfehler beeinflusst, da diese Fehlervektoren große Residuen erzeugen, die von den iterativen Gleichungslösern schwerer zu lösen sind und damit zu Fehlern führen.

Da Diskretisierungs- und Modellierungsfehler die größten Fehlerquellen sind, wird auf die Diskretisierung und die Beschreibung der Turbulenz, die als einzige Größe empirisch modelliert wird, in den Abschnitten 7.8 und 7.5 vertieft eingegangen.

Der Näherungsfehler, also die Differenz zwischen mathematisch exakter und numerischer Lösung soll gegen null gehen, wenn die Schrittweiten Δx und Δt sich Null nähern. Hierbei wird der lokale Diskretisierungsfehler betrachtet. Diese Forderung nach Konsistenz wurde im Rahmen dieser Arbeit nicht überprüft, sondern als Güteeigenschaft des verwendeten kommerziellen Programms vorausgesetzt.

Wenn sich eine Lösung bei zunehmender Netzverfeinerung immer weiter der exakten Lösung nähert, ist sie konvergent. Ändert sich die Lösung ab einer gewissen Verfeinerungsstufe nicht mehr, ist eine sogenannte "gitterunabhängige" Lösung erreicht. Für alle numerischen Modelle wurde das Berechnungsgitter solange verfeinert, bis sich die Geschwindigkeit und die Druckverteilung an der Profiloberfläche nicht mehr änderte.
Die Erhaltungsgleichungen für die betrachteten Größen, hier Masse und Impuls, müssen erfüllt sein. Diese sind bei expliziter Lösung dieser Gleichungen bei hinreichender Diskretisierung ohnehin erfüllt. Bei sehr groben Gittern kann der Diskretisierungsfehler dazu führen, dass diese Forderung nicht eingehalten wird, da sich bei der Finiten-Volumen-Methode die Massenerhaltung aus der numerischen Diskretisierung ergibt.

Die numerische Lösung soll innerhalb der physikalisch sinnvollen Grenzen liegen, so dass beispielsweise Größen wie die Masse nie negativ werden. Alle physikalischen Größen wurden sinnvoll unter Beachtung der Ähnlichkeitsmaßstäbe gewählt und entsprechen den natürlichen Größen, die bei einer Umströmung eines ein Meter breiten Modells im Windkanal auftreten würden.

7.8 Diskretisierung

7.8.1 Grundlagen

Um Fehler durch schlechte Elementgeometrie zu vermeiden, wurde nur in Ausnahmefällen, beispielsweise im Bereich von schrägen Kanten, auf trapezförmige Elemente zurückgegriffen. Ansonsten wurden nur Rechteckelemente mit möglichst einheitlichen Kantenlängen verwendet. Eine spezielle numerische Technik erlaubt, dass zwei Elementkanten an eine gegenüberliegende Elementkante angrenzen können ([49]).

Die Verfeinerung des Berechnungsgitters und die Anzahl der Zeitschritte wurde für alle untersuchten Profile einheitlich gewählt.

Die Zeitschrittänge muss so gewählt werden, dass die Amplitudenlänge \(T = \frac{2\pi}{\omega} \) hinreichend stark aufgelöst wird \((\Delta t < T/1000) \). Abhängig von der Amplitudenlänge, welche je nach untersuchter reduzierter Frequenz \(k \) unterschiedlich war, variierte auch
die Zuschrittänge der Berechnungen. Der Zuschritt lag für alle Profile einheitlich im Mittel bei ca. 0,0025 s.

7.8.2 A posteriori-Netzverfeinerung

Zunächst wurde die Berechnung auf einem gröberen Berechnungsgitter durchgeführt. Um die Genauigkeit der Berechnung zu steigern, wurden nach einer stationären Berechnung die Elemente mit großem Geschwindigkeitsdefekt nachträglich zerteilt. Dieser Vorgang wurde zwei mal durchgeführt und wird als lokale adaptive Netzverfeinerung bezeichnet.

Zusätzlich wurde die Grenzschicht verfeinert, damit sich der Geschwindigkeitsgradient ausreichend genau ausbilden kann. Dabei wurden die beiden folgenden Näherungsformeln für die Grenzschichtdicke verwendet [93]:

Laminare Grenzschicht:

\[\delta_L(x) = \frac{5}{Re_x^{0.5}} x \] \hspace{1cm} (7.28)

Turbulente Grenzschicht:

\[\delta_T(x) = 0.381 \frac{x}{Re_x^{0.5}} : \quad 0 \leq x \leq B \] \hspace{1cm} (7.29)
Die maximale Grenzschichtdicke ergibt sich an der Stelle \(x = B \) am stromabgewandten Ende des Brückquerschnittes. Für die in der Simulation verwendete Reynoldszahl \(Re = 200.000 \) ergeben sich am Profilende bei \(x = 1 \text{ m} \) die Grenzschichtdicken \(\delta_L(x) = 0,011 \text{ m} \) und \(\delta_T(x) = 0,033 \text{ m} \).

Ein Abschnitt vom wandnahen Bereich des resultierenden Berechnungsgitters ist in Abbildung 7.3 gezeigt. Die kleinste Elementabmessung am Profilrand beträgt einheitlich bei allen Profillen 0,0025 \text{ m}. Die Elemente werden in größerer Entfernung vom Profil immer größer, um die Anzahl der Zellen zu begrenzen. Das Berechnungsgitter ist fünf mal so lang wie das Profil. Hierbei beträgt die Länge des Nachlaufs 3,5\(B \), die Länge des Vorlaufs 0,5\(B \). Bei plattenähnlichen Profillen wurde so ein Gitter mit ca. 30.000 Volumenelementen erzeugt.

Zusätzlich wurden bei stumpfen Profillen, also Profillen mit definierten Ablösepunkten durch scharfe Kanten, die Bereiche, in denen sich Ablösewirbel bilden, wie die Grenzschicht feiner diskretisiert. Hier wurden Modelle deshalb mit bis zu 50.000 Volumenelementen generiert.

7.9 Die Finite-Volumen-Methode

7.9.1 Einführung

Während sich in der Strukturmechanik die Finite-Elemente-Methode durchgesetzt hat, ist in der Strömungsmechanik die Finite-Volumen-Methode am verbreitetsten. Dies liegt vor allem an der Tatsache, dass die FVM so formuliert ist, dass die Erhaltungseigenschaft explizit in jedem Volumenelement erfüllt ist, während bei der FEM die Massenerhaltung über Ansatzfunktionen und Variationsprinzip näherungsweise erfüllt wird. Die FEM dagegen besitzt die höchste Flexibilität in der Gittergenerierung, da die Elemente z.B. schiefwinklig sein können oder auch Dreieckselemente bzw. Tetraederelemente gewählt werden können.

Das verwendete Programm *Comet* gibt dem Nutzer die Freiheit, unter verschiedenen numerischen Lösungsverfahren zu wählen. Im Folgenden werden die in dieser Arbeit gewählten numerischen Lösungsverfahren kurz erläutert.

Die Terme der Navier-Stokes-Gleichungen 7.9 und 7.10 besitzen unterschiedliche numerische Eigenschaften und werden unterschiedlich numerisch behandelt. Man unterscheidet den konvektiven und den diffusiven Anteil.

Der konvektive Term \(\int_S \rho v \cdot n dS \) ist nichtlinear, während die diffusiven Anteile, welches die viskosen Anteile von Term \(\int_S T \cdot n dS \) sind, lineare Eigenschaften besitzen. Die konvektiven Anteile beschreiben die Ausbreitung der Erhaltungsgrößen in Strömungsrichtung, während die dispersiven Anteile die Ausbreitung quer zur Strömungsrichtung beschreiben.

7.9.2 Interpolationsverfahren

Abbildung 7.4: zweidimensionales Kontrollvolumen
Das Upwind-Interpolationsverfahren nähert eine Erhaltungsgröße \(\phi_e \) im Mittelpunkt der Seitenfläche mit
\[
\phi_e = \begin{cases}
\phi_P & \text{wenn } (v_n)_e > 0 \\
\phi_E & \text{wenn } (v_n)_e < 0
\end{cases}
\]
(7.30)
Es wird also immer die Erhaltungsgröße des Kontrollvolumens stromauf verwendet, um die Erhaltungsgröße im Mittelpunkt der Seitenfläche zu berechnen. Das Upwind-Interpolationsverfahren ist erster Ordnung genau. Es eignet sich gut für Berechnungen auf relativ groben Berechnungsgittern.

Das zentrale Interpolationsverfahren interpoliert zur Näherung der Erhaltungsgröße \(\phi_e \) linear zwischen den Flächen benachbarten:
\[
\phi_e = \phi_E p_e + \phi_P (1 - p_e)
\]
(7.31)
mit
\[
p_e = \frac{x_e - x_P}{x_K - x_P}
\]
(7.32)
Das zentrale Interpolationsverfahren ist zweiter Ordnung genau, führt aber auf Oszillationen, wenn es auf zu groben Gittern angewendet wird.

Für die unterschiedlichen Transporttermen können unterschiedliche Interpolationsverfahren gewählt werden. Die diffusive Strömung wird grundsätzlich mit dem zentralen Interpolationsverfahren modelliert.

Da im Bereich starker Gradienten ein feines Berechnungsgitter gewählt wurde, wurde für die Modellierung der konvektiven Strömung die Massen- und Impulserhaltung auf das zentrale Interpolationsverfahren zurückgegriffen. Da es bei der Turbulenzmodellierung mit dem zentralen Interpolationsverfahren zu numerischen Problemen kam, wurde für die Turbulenzgleichungen (siehe Abschnitt 7.5) das numerisch gutmütige Upwind-Interpolationsverfahren gewählt.

Comet bietet die Möglichkeit, zur Stabilisierung der numerischen Lösung einen Wichtungsfaktor ("Blending"-Faktor) zwischen der Lösung erster und zweiter Ordnung für das Zentrale Differenzenverfahren einzuführen. Für die Impulserhaltung wurde ein Faktor von \(\gamma = 0,5 \) gewählt, für die Massenerhaltung wurde auf diese Wichtung (\(\gamma = 1,0 \)) verzichtet und damit die Lösung zweiter Ordnung gewählt.

7.9.3 Zeitintegration

bestimmten Größen stellt das Zeitintegrationsverfahren her. Werden die gesuchten
Größen zum Zeitpunkt \(t_{n+1} \) direkt aus dem vorausgehenden Zeitschritt bestimmt,
spricht man von einem expliziten Zeitschrittverfahren.

Hier wurde für die Zeitintegration jedoch das implizite Eulerverfahren wegen seiner
guten Lösungseigenschaften gewählt.

\[
\phi^{n+1} = \phi^n + f(t_{n+1}, \phi^{n+1})\Delta t
\]

(7.33)

Das Eulerfahren verwendet Differenzenquotienten erster Ordnung. \(n \) bezeichnet den
Berechnungszeitpunkt. Werden die Ortsableitungen zum Zeitpunkt \(t_{n+1} \) ausgewertet,
spricht man von einem impliziten Zeitverfahren. Ist der Zeitschritt genügend klein,
ist die Lösung hinreichend genau.

Abbildung 7.5: Randbedingungen des numerischen Modells
7.10 Anfangsbedingungen

Zu Beginn, dem Zeitpunkt \(t_0 = t(0) \), muss zur Lösung des Anfangsrandwertproblems, welches durch die Navier-Stokes-Gleichungen formuliert wird, eine Geschwindigkeitsverteilung vorgegeben werden. Die Vorgabe eines Zustandes zum Zeitpunkt \(t_0 \) bezeichnet man als Anfangsbedingung. Da die räumliche Verteilung der Geschwindigkeit zum Zeitpunkt \(t_0 \) nicht bekannt ist, wurde die Anströmgeschwindigkeit \(u_\infty \) in allen Elementen als Anfangsbedingung vorgegeben. Ebenfalls wurde der atmosphärische Druck (1 bar) als Anfangsbedingung vorgegeben.

7.11 Randbedingungen

Weit entfernt vom umströmten Profil wird das ungestörte Strömungsfeld wie folgt angenommen:

\[
v = \begin{pmatrix} u_\infty \\ 0 \\ 0 \end{pmatrix} \quad \text{(7.34)}
\]

\[
p = 1 \text{ bar} \quad \text{(7.35)}
\]

Man unterscheidet folgende Randbedingungen:

Dirichletrandbedingung:

Es werden die Unbekannten auf dem Rand vorgegeben, z.B. der Druck oder die Geschwindigkeitsvektoren. Die Geschwindigkeit in x-Richtung im Fernfeld wird als konstant angenommen. Sie wird durch die Randbedingungen am Fernfeldrand modelliert.

Da das gesamte Berechnungsgebiet wie in Abschnitt 7.4 beschrieben bewegt wird, müssen die lokalen Einstromrandbedingungen für die Randelemente in jedem Zeit-
schrift neu berechnet werden, denn bei einer Drehung des Gesamtgebietes ändert sich der Winkel des Vektors der Anströmgeschwindigkeit zum Gesamtgitter.

In y-Richtung wird ebenfalls eine instationäre Randbedingung angegeben. Diese ergibt sich aus der Ableitung der vorgegebenen Bewegungsfunktion des Gesamtgitters. Diese instationären Wandrandbedingungen müssen ebenfalls in jedem Zeitschritt neu berechnet werden.

Neumannrandbedingung:

Es werden die Gradienten der Unbekannten am Rand vorgegeben. Diese Randbedingung wird für den Ausflußrand in Kombination mit einer Volumenflussrate, die sich aus den Einstromrandbedingungen ergibt, berechnet (Die Summe aller Zu- und Abflüsse muss im Falle eine inkompressiblen Strömung gleich null sein).

\[\left(\frac{\partial v}{\partial n_B} \right)_B = \Lambda n_B \quad (7.36) \]

\(n_B \) ist die Richtung senkrecht auf den Abflußrand, \(n_B \) der Einheitsvektor in diese Richtung. Der Parameter \(\Lambda \) wird so gewählt, dass die spezifische Volumenflussrate

\[V_s = \int_{S_B} = vds \quad (7.37) \]

Wandrandbedingung:

Auf der Profiloberfläche wird die tangentiale Geschwindigkeit wegen der Haftbedingung zu Null gesetzt. Die Geschwindigkeit des Fluids genau am Rand muss der Geschwindigkeit der Wand entsprechen. Direkt am Rand gilt aber das \(k-\epsilon \)-Modell nicht mehr, da die Reynoldszahl durch die niedrige Geschwindigkeit sehr klein geworden ist.

Zur Modellierung dieses wandnahen Bereiches werden sogenannte Wandfunktionen verwendet, da es bei den sehr dünnen turbulenten Grenzschichten kaum möglich ist, die Grenzschicht fein genug aufzulösen. Hierbei werden ein normierter Wandabstand \(y^+ \) und eine normierte wandparallele Geschwindigkeit \(u^+ \) eingeführt.

\[u^+ = \frac{u}{u_r} \]

\[y^+ = \frac{y}{y_r} \]

Die Beziehung zwischen \(u^+ \) und \(y^+ \) lautet

\[u^+ = \frac{1}{\kappa} \ln y^+ + B \quad (7.38) \]
in den Grenzen $30 < y^+ < 300$.

$u_r = \sqrt{\tau_w / \rho}$ ist die Wandgeschwindigkeit, u die jeweilige wandparallele Geschwindigkeitskomponente und y der dazugehörige Wandabstand, $\kappa = 0,41$ die v. KARMAN-Konstante und $B = 5,0$ eine weitere empirisch ermittelte Konstante.

Wird dieses Wandgesetz zur Modellierung der nahen Grenzschicht herangezogen, gilt Gleichung 7.24 nicht für die Zellen an der Profiloberfläche, sondern abweichende Gleichungen, siehe [34].

Turbulenzrandbedingung:

Wenn das Gebiet als vollturbulent angenommen wird, müssen auch die Randwerte der beiden Turbulenzgleichungen vorgegeben werden. Die turbulente kinetische Energie wird dabei aus der Turbulenzintensität, welche aus Versuchsdaten bekannt ist, berechnet.

Im Rahmen dieser Arbeit wurde eine Turbulenzintensität von $T_u = 5\%$ angenommen, die zwischen der Turbulenzintensität des natürlichen Windes und der Turbulenzintensität des Wasserkanals liegt. Für die Brücke über den großen Belt wurde beispielsweise in der Natur eine Turbulenzintensität von $T_u = 10\%$ aus Messungen ermittelt. Die Turbulenzintensität des Wasserkanals, in dem die Vergleichsmessungen stattfanden, liegt wie bei den meisten Windkanälen bei $T_u \leq 1\%$.

Aus der vorgegebenen Geschwindigkeit u_∞ am Einstromrand und der Turbulenzintensität T_u kann die turbulente kinetische Energie näherungsweise berechnet werden [73]:

$$k \approx \frac{3}{2} T_u^2 u_\infty^2 \quad (7.39)$$

Zur Bestimmung der Dissipationsrate ϵ wird der turbulente Längenmaßstab L_T geschätzt:

$$\epsilon \approx \frac{k^{3/2}}{L_T} \quad (7.40)$$

Der turbulente Längenmaßstab L_T wurde zu 0,001 m gewählt, so dass er unterhalb der Größe der kleinsten Elementlänge liegt.

In einer früheren Veröffentlichung [111] wurden die Berechnungsergebnisse ohne Turbulenzmodellierung für das Profil GB angegeben. Die Flatterderivativa des Profils GB mit und ohne Turbulenzmodellierung weichen kaum voneinander ab.

Im Abbildung 7.6 sind für den Querschnitt GB die numerisch berechneten Zeitsignale $A_h(t)$ mit und ohne Turbulenzmodellierung aufgetragen. Die Flatterderivativa ergeben sich wie folgt:

Mit Turbulenzmodellierung $c_{hh} = 0.625 - 0.645 i$

Ohne Turbulenzmodellierung $c_{hh} = 0.501 - 0.743 i$
Auffallend ist vor allem der unterschiedliche stationäre Anteil der Luftkraft, der sich aus dem Mittelwert der Auftriebskraft ergibt. Wie sich in den numerischen Berechnungen im Rahmen dieser Arbeit zeigte, hat die Turbulenzmodellierung stärkeren Einfluß auf die stationären Luftkraftbeiwerte als auf die dynamischen Luftkraftbeiwerte. Gering ausgeprägte und höherfrequente Wirbelresonanz kann durch die Turbulenzmodellierung auch unterdrückt werden. Die Schwan kungsbewegung der Auftriebskraft, ohne Turbulenzmodellierung berechnet, zeigt Wirbelresonanz, während die Auftriebskraft bei Hinzunahme der Turbulenzmodellierung keine Wirbelresonanzen mehr zeigt. Der Einfluss der Turbulenz und damit die Wichtigkeit einer exakten Turbulenzmodellierung ist jedoch für die Berechnung bewegungsinduzierter Luftkräfte von untergeordneter Bedeutung. Der dimensionslose y^+-Wert lag z.B. am Profilrand des Tacoma-Profiles bei ca. 12 im wandnächsten Element. Die effektive Viskosität $\mu + \mu_t$ am Einströmrand erhöht sich um ca. 5 % ($\mu_t \approx 1.6 \text{ Pa} \cdot \text{s}$). Somit ist der Einfluss der turbulenten Viskosität im Fernfeld ebenfalls vernachlässigbar klein.
7.12 Auswertung der numerischen Ergebnisse

7.12.1 Grundlagen der Auswertung

Der Vektor der Luftkräfte ergibt sich aus der allgemeinen Bewegungsgleichung in linearer Abhängigkeit vom Verschiebungvektor x:

$$\mathbf{F}_L = \omega^2 \mathbf{L}x$$ \hspace{1cm} (7.41)

Zur Bestimmung der Oberflächenkräfte infolge der Translationsbewegung wurde das gesamte Berechnungsgitter und damit auch das Profil um ein Maß h sinusförmig bewegt. Es handelt sich um eine im Verhältnis zur Querschnittsgröße kleine Auslenkung.
von weniger als vier Prozent der Breite B.

$$h = \hat{h} e^{i\omega t} \quad (7.42)$$

Es ergeben sich nach dem theoretischen Ansatz die folgenden instationären Strömungskräfte:

$$A = \hat{A}_h e^{i\omega t} \quad (7.43)$$
$$M = \hat{M}_h e^{i\omega t} \quad (7.44)$$

ω ist hier die Eigenkreisfrequenz der vorgegebenen erzwungenen harmonischen Bewegung.

Um die zeitabhängigen Oberflächenkräfte infolge Rotationsbewegung zu bestimmen, wurde der Querschnitt um ein Maß $\hat{\alpha}$ sinusförmig bewegt. Dabei wurde eine kleine Drehung von $|\hat{\alpha}| \leq 5^\circ$ angesetzt.

$$\alpha = \hat{\alpha} e^{i\omega t} \quad (7.45)$$

Es ergeben sich nach dem theoretischen Ansatz die folgenden instationären Strömungskräfte:

$$A = \hat{A}_\alpha \omega^2 e^{i\omega t} \quad (7.46)$$
$$M = \hat{M}_\alpha \omega^2 e^{i\omega t} \quad (7.47)$$

Für eine reine Translationsschwingung reduzieren sich die Gleichungen für die Strömungskräfte mit

$$\mathbf{x}_h = \begin{bmatrix} \hat{h} \\ 0 \end{bmatrix} e^{i\omega t} \quad (7.48)$$

zu

$$A_h(t) = \omega^2 \pi \rho \beta^3 c_{ba} \hat{h} \quad (7.49)$$

und

$$M_h(t) = \omega^2 \pi \rho \beta^3 c_{ba} \hat{h} \quad (7.50)$$

Die Gleichungen der Strömungskräfte für eine reine Rotationsschwingung ergeben sich mit

$$\mathbf{x}_\alpha = \begin{bmatrix} 0 \\ \hat{\alpha} \end{bmatrix} e^{i\omega t}$$

zu

$$A_\alpha(t) = \omega^2 \pi \rho \beta^3 c_{ba} \hat{\alpha} \quad (7.51)$$

und

$$M_\alpha(t) = \omega^2 \pi \rho \beta^3 c_{ba} \hat{\alpha} \quad (7.52)$$
7.12.2 Bestimmung der Flatterderivativa mittels FFT

Die maximale Größe und die Phasenverschiebung der bewegungsinduzierten Kräfte zur vorgegebenen Bewegung werden im Frequenzbereich bestimmt.

Zur Berechnung der Fouriertransformationen der Zeitplots wird die Fast-Fourier-Transformation (FFT) verwendet, welche eine Form der "Discrete Fourier Transformation" (DFT) ist.

Die Fouriertransformation einer kontinuierlichen Funktion \(x(t) \)

\[
X(i\omega) = \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt \tag{7.53}
\]

lässt sich für eine diskrete Funktion durch

\[
\hat{X}(i\omega) = \sum_{k=0}^{N-1} x(k\Delta t) \Delta t \tag{7.54}
\]

ausdrücken.

Es wird angenommen, dass \(t > 0 \) ist und der zu untersuchende Zeitbereich in \(N \) Intervalle der Größe \(\Delta t \) unterteilt wurde.

Die größte erfassbare Frequenz

\[
f_s = \frac{1}{\Delta t} \tag{7.55}
\]

ist der Kehrwert des Zeitschritts \(\Delta t \).

Die Annäherung ist also periodisch in \(\omega \) mit einer Periode

\[
\omega_s = 2\pi f_s = \frac{2\pi}{\Delta t} \tag{7.56}
\]

Dies entspricht auch der maximalen Frequenz, die durch die FFT erfasst werden kann. Der Zeitschritt steuert somit auch die obere Grenze der erfassbaren Frequenzen. Je kleiner \(\Delta t \) ist, desto größere Frequenzen können erfasst werden.

Zur numerischen Beschreibung muss auch der Frequenzbereich diskretisiert werden. Der Frequenzbereich wird in \(N \) Intervalle im Bereich 0 bis \(\omega_s \) unterteilt, so dass ein Frequenzintervall sich zu

\[
\omega_n = \Delta \omega n = \frac{2\pi}{N\Delta t} n = 2\pi \frac{f_n}{N} \tag{7.57}
\]

ergibt.

Die numerische Näherungslösung folgt zu

\[
\hat{X}(i\Delta \omega n) = \sum_{k=0}^{N-1} x[k\Delta t] e^{-i2\pi k\Delta \omega n} \Delta t X_n \tag{7.58}
\]
mit \(n = 0, 1, 2, \ldots, N - 1 \). \(X_n \) ist die diskrete Fouriertransformierte des diskreten Signals \(x[k \Delta t], k = 0, 1, 2, \ldots, N - 1 \). Wenn für \(N \) eine Potenz von 2 gewählt wird, geht die DFT in die FFT über und wird wesentlich schneller berechnet.

Je mehr Werte eingelesen werden und je kleiner \(\Delta t \) ist, desto besser ist die Frequenzauflosung, denn es gilt das sogenannte Nyquist Kriterium

\[
\Delta \omega = \frac{2\pi}{N \Delta t}.
\]

(7.59)

In dem Falle, dass nicht genügend Werte für eine FFT vorhanden sind, kann man die fehlenden Werte mit Nullen auffüllen. Dieses Vorgehen wird als "Zero-Padding" bezeichnet, siehe hierfür beispielsweise Hoffmann [45]. Das Zero-Padding erhöht zwar die Anzahl der Frequenzschritte \(\Delta \omega \), steigert aber nicht die Genauigkeit, die an die Abtastrate und Anzahl der Daten gekoppelt ist.

![Abbildung 7.7: Auswertung mittels FFT](image)

In den numerischen Simulationen wurden die Zeitschritte so gewählt, dass jedes Schwingungsintervall mit \(N = 1000 \) oder \(N = 2000 \) Zeitschritten diskretisiert wird. Da die Bewegungsfrequenz bekannt ist, lassen sich die Werte genau an der Stelle der Bewegungsfrequenz im jeweiligen Bewegungsvektor ablesen.

In Abbildung 7.7 ist die Annahme, die bei der Verwendung der FFT getroffen wird, einmal grafisch dargestellt. Links neben dem markierten Bereich ist noch das Zeitsignal vor dem eingeschwungenen Zustand zu erkennen, welches während des Einschwingvorgangs noch vom Zeitsignal des eingeschwungenen Zustands abweicht. Die FFT geht davon aus, dass das ausgewertete Signal von \(-\infty \) bis \(\infty \) kontinuierlich ist.

7.12.3 Bestimmung der Flatterderivativa mittels Parameteridentifikation im Zeitbereich

Eine weitere Möglichkeit zur Berechnung der Flatterderivativa aus den Zeitverläufen des Auftriebs und des Luftkraftmomentes bietet die Parameteridentifikationsverfahren im Zeitbereich. Diese Verfahren wurden in dieser Arbeit auch zur Auswertung der
Bewegungszeitverläufe, die aus den Versuchen nach der Methode der freien gekoppelten Schwingungen gewonnen wurden, verwendet (siehe Abschnitt 8.3 für Details). Mit dem Levenberg-Marquardt-Verfahren, welches auf der Methode der kleinsten Quadrate beruht, wird nach dem Minimum der quadratischen Abweichung zwischen dem diskreten Zeitsignal, welches aus der Auswertung der numerisch berechneten Druckverteilung gewonnen wurde (siehe Abbildung 7.8) und dem mathematischen Modell der bewegungsinduzierten Kräfte gesucht:

\[
\text{minimiere } r^2(c_{hh}) = \sum_{i=1}^{n} \left(\omega_i^2 \pi \rho b^2 c_{hh}(x_i(t)) - A_h(t) \right)^2
\]

(7.60)

Hier ist \(A_h(t) \) die numerisch ermittelte Antwort auf die vorgegebene Bewegung \(x_i(t) = \bar{x}_e \omega t \), \(n \) ist die Anzahl der Zeitschritte. Auf dieselbe Weise werden die Näherungskurven der weiteren Flatterderivativa aus den anderen numerisch ermittelten Zeitverläufen \(A_\alpha(t) \), \(M_h(t) \) und \(M_\alpha(t) \) bestimmt.
Kapitel 8

Experimentelle Bestimmung von Flatterderivativa

8.1 Einleitung

Zur Messung von Strömungskräften auf Brücken gibt es zwei Möglichkeiten. Zum einen könnten die Strömungskräfte an der Originalbrücke, also im Maßstab 1:1, be-
stimmt werden. Zum anderen könnten sie durch Modellversuche in kleinerem Maßstab ermittelt werden.

Die einfachere Methode ist die Simulation der Strömung am maßstäblich verkleinerten Modell im Wind- oder Wasserkanal. Nachteil dieser Methode ist, dass durch den kleineren Maßstab und die begrenzten Windgeschwindigkeiten im Versuchsstand eine wirklichkeitsgetreue Abbildung der Strömungsverhältnisse wegen der Verletzung der Reynoldsähnlichkeit (siehe Abschnitt 6.1) nicht möglich ist.

Für die Bestimmung von Luftkräften im Modellversuch wurden bisher vier verschiedene Versuchsaufbauten verwendet:

Teilmodellversuche mit starrem Querschnitt unter gesteuerter Bewegung

Teilmodellversuche mit starrem Querschnitt und elastischer Aufhängung

Teilmodellversuche mit elastischem Querschnitt und starrer Aufhängung

Versuche mit elastischem Querschnitt und starrer Aufhängung, sogenannte Taut-Strip-Versuche, wurden entwickelt, um gewisse Schwächen der Teilmodellversuche zu umgehen. Hierfür werden Versuche mit einer vereinfachten dreidimensionalen Struktur mit sinusförmigen Eigenformen durchgeführt. Die Steifigkeit

Vollmodellversuche mit einem Modell der Gesamtbrücke

Bei Experimenten zur Ermittlung der Strömungskräfte auf Brücken werden zumeist höchstens die Druckverteilung, oft sogar nur die direkt gemessenen resultierenden integralen Kräfte, oder wenige diskrete Daten aus dem Strömungsfeld ermittelt. Dies ist zur Beurteilung der hochkomplexen Strömungsvorgänge, die diese Kräfte hervorufen, nicht geeignet. Um das Strömungsfeld in seiner Gesamtheit zu erfassen, ist eine genaue zeitliche und räumliche Erfassung des Strömungsfeldes im gestörten Bereich um das Brückenprofil herum notwendig. Dieses ist mit dem in dieser Arbeit zur Verifikation durchgeführten Messungen nicht möglich. Eine genauere Untersuchung wäre wünschenswert, ist aber nach heutigen Maßstäben sehr aufwendig.
8.2 Die Methode der erzwungenen Schwingungen

8.2.1 Einleitung

Die Methode der erzwungenen Schwingungen ist der Methode, die für die numerische Berechnung der Flatterderivativa gewählt wurde, am ähnlichsten. Ein Querschnitt wird harmonischen Schwingungen konstanter Amplitude unterworfen. Die Kräfte, die das Fluid auf den bewegten Querschnitt ausübt, werden gemessen.

Im Auftrag des Arbeitsbereiches Baustatik und Stahlbau der Technischen Universität Hamburg-Harburg wurden am Institut für Aerodynamik und Gasdynamik der Universität Stuttgart zur Verifikation der numerischen Berechnungen insgesamt acht unterschiedliche Querschnitte untersucht [7]. Zusätzlich wurden die Flatterderivativa für ein Trapezprofil (B8, Form und Abmessungen siehe Anhang A) zur Verfügung gestellt, die mit dem gleichen Versuchsaufbau bestimmt wurden. In Abbildung 8.1 sind die acht untersuchten Profile dargestellt. Die Auswahl der Profile erfolgte unter der Maßgabe, dass Profile mit möglichst unterschiedlichem aerodynamischen Eigenschaften untersucht werden sollten. Das unterschiedliche aeroelastische Verhalten der hier untersuchten Querschnitte zeigt sich vor allem im Flatterderivativum $c''_{\alpha\alpha}$, siehe Abbildung 8.2. Der Übersichtlichkeit halber sind nicht die Flatterderivativa aller Profile dargestellt. Von den Flatterderivativa, die mit den analytischen Flatterderivativa weitgehend identisch sind, sind lediglich die Derivativa des Profils P dargestellt. Ziel dieser Versuche war es zu überprüfen, ob die numerisch berechneten Flatterderivativa das jeweilige aeroelastische Verhalten richtig wiedergeben.

Experimente

Abbildung 8.1: Im Wasserkanal untersuchte Profile

Abbildung 8.2: Experimentell bestimmtes Flatterderivativ \(c_{\alpha \alpha} \) einiger im Wasserkanal untersuchter Profile (TH: Analytisch berechnetes Flatterderivativum nach Theodorsen)

8.2.2 Versuchsaufbau

Die Versuche wurden in einem Wasserkanal mit einem Messquerschnitt von 1,5 m Breite und 0,8 m Höhe durchgeführt. Der Wasserkanal ist vom Göttinger Typ und verfügt somit über eine geschlossene Wasserrückführung. Eine Beruhigungskammer mit Sieben im Vorlauf der Messstrecke dient zur Reduzierung von Wirbeln und Turbulenzen. Der Turbulenzgrad der Messstrecke liegt unter 1,0%.

Abbildung 8.3: Versuchsaufbau für die Experimente zur Ermittlung der instationären Luftkräfte nach der Methode der erzwungenen Schwingungen im Wasserkanal (IAG Stuttgart) mit Brückenmodell

Eine Waage hat den Auftrieb A und das Luftkraftmoment M_L in Abhängigkeit von der Zeit t gemessen. Die Ausgangssignale wurden mit 10 Hz tiefpassgefiltert, das heißt, dass keine hochfrequenten Schwankungen wie beispielsweise kleinskalige Turbulenzen erfasst wurden. Die Bewegungsfrequenzen der erzwungenen Schwingung lagen dagegen zwischen 0,3 und 3 Hz.

Eine alternative Auswertungsmethode für die experimentell gewonnene Daten, welche auf der Methode der kleinsten Quadrate beruht, beschreiben Ricciardelli und de Grenet in [77].
8.2.3 Versuchsergebnisse

Die Reynoldszahl wurde mit 100.000, 150.000 und 200.000, für einige Querschnitte bis 250.000 variiert. Der Einfluss der Reynoldszahl ist für zwei unterschiedliche Datensätze in den Abbildungen 8.5 und 8.6 gezeigt. Die vertikalen Linien markieren die kritische Frequenz des jeweiligen Profils für eine Reynoldszahl von $Re = 200.000$. Bei den experimentell untersuchten Querschnitten hat die Reynoldszahl nur bei den Profilen G und R signifikanten Einfluss auf die resultierende kritische Frequenz. In
Tabelle 8.1: Kritische Windgeschwindigkeiten berechnet mit Datensatz 2 (Anhang F) nach Abschnitt 4.5 unter Variation der Reynoldszahl

<table>
<thead>
<tr>
<th>Profil</th>
<th>Mittelwert</th>
<th>Mittlere Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>40,34 m/s</td>
<td>2,20 m/s</td>
</tr>
<tr>
<td>S</td>
<td>43,29 m/s</td>
<td>2,06 m/s</td>
</tr>
<tr>
<td>M</td>
<td>39,57 m/s</td>
<td>1,59 m/s</td>
</tr>
<tr>
<td>BS</td>
<td>36,94 m/s</td>
<td>2,69 m/s</td>
</tr>
<tr>
<td>P</td>
<td>37,87 m/s</td>
<td>0,32 m/s</td>
</tr>
<tr>
<td>R</td>
<td>29,60 m/s</td>
<td>3,50 m/s</td>
</tr>
<tr>
<td>G</td>
<td>73,79 m/s</td>
<td>2,39 m/s</td>
</tr>
<tr>
<td>C</td>
<td>23,33 m/s</td>
<td>2,01 m/s</td>
</tr>
<tr>
<td>TC</td>
<td>18,89 m/s</td>
<td>0,33 m/s</td>
</tr>
</tbody>
</table>

Tabelle 8.1 sind die mittlere kritische Windgeschwindigkeit und die mittlere Abweichung bei Variation der Reynoldszahl im untersuchten Reynoldszahlbereich für den Datensatz 2 (Anhang F) angegeben. Die kritische Windgeschwindigkeit wurde nach der vollständigen Lösung entsprechend Abschnitt 4.5 unter Zugrundelegung der jeweiligen experimentell ermittelten Flatterderivativa berechnet. Die Flatterderivativa wurden mit den Bewegungsamplituden \(h = 0,02B \) bzw. \(\alpha = 5^\circ \) ermittelt. Das Rechteckprofil \(P \) und das H-Profil TC zeigen den geringsten Einfluss der Reynoldszahl auf die kritische Windgeschwindigkeit. Die anderen Profile zeigen eine mittlere Abweichung von ca. 5%. Die Reynoldszahl hat damit keinen signifikanten Einfluss auf die kritische Windgeschwindigkeit. Lediglich die kritische Windgeschwindigkeit des Profiles R schwankt um über 10%.

Ebenfalls wurden die Amplituden variiert. Die Vertikalamplituden 0,01\(B \), 0,02\(B \), 0,04\(B \) und die Rotationsamplituden 2\(^\circ \), 5\(^\circ \), 8\(^\circ \) wurden untersucht. In den Abbildungen ist der Einfluss der Bewegungsamplitude auf die kritische Windgeschwindigkeit angegeben. Die kritische Windgeschwindigkeit wird mit der in Abschnitt 4.5 angegebenen Methode berechnet. In den Abbildungen 8.7 und 8.8 sind die kritischen Frequenzen \(\omega_{krit} \) für verschiedene Amplitudenkombinationen ermittelt.

In Tabelle 8.2 sind die Mittelwerte für eine Reynoldszahl von \(Re = 200.000 \) und der Mittelwert aller Abweichungen vom Mittelwert der kritischen Windgeschwindigkeiten samtlicher Amplitudenkombinationen für den Datensatz 2 (Anhang F) gegeben. Mit den theoretischen Luftkraftbeiwerten ergibt sich eine kritische Windgeschwindigkeit von 43,1 m/s.

In den beiden Tabellen ist deutlich zu sehen, dass die Variation der Reynoldszahl eine größere Auswirkung auf die kritische Geschwindigkeit hat als die Variation der Bewegungsamplitude. Nur beim Profil TC beeinflusst die Bewegungsamplitude die kritische Windgeschwindigkeit stärker. Hier schwankt die kritische Windgeschwindigkeit abhängig von der Bewegungsamplitude um ca. 10 %.
Experimente

<table>
<thead>
<tr>
<th>Profil</th>
<th>Mittelwert</th>
<th>Mittlere Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>41,22 m/s</td>
<td>0,08 m/s</td>
</tr>
<tr>
<td>S</td>
<td>42,45 m/s</td>
<td>0,10 m/s</td>
</tr>
<tr>
<td>M</td>
<td>39,34 m/s</td>
<td>0,38 m/s</td>
</tr>
<tr>
<td>B8</td>
<td>37,59 m/s</td>
<td>0,17 m/s</td>
</tr>
<tr>
<td>P</td>
<td>37,77 m/s</td>
<td>0,09 m/s</td>
</tr>
<tr>
<td>R</td>
<td>34,27 m/s</td>
<td>1,36 m/s</td>
</tr>
<tr>
<td>G</td>
<td>76,60 m/s</td>
<td>1,67 m/s</td>
</tr>
<tr>
<td>C</td>
<td>21,23 m/s</td>
<td>1,15 m/s</td>
</tr>
<tr>
<td>TC</td>
<td>16,11 m/s</td>
<td>1,89 m/s</td>
</tr>
</tbody>
</table>

Tabelle 8.2: Kritische Windgeschwindigkeiten berechnet mit Datensatz 2 (Anhang F) unter Variation der Bewegungsamplituden

<table>
<thead>
<tr>
<th>Profil</th>
<th>dc₄₀/dₐ</th>
<th>(dc₄₀/dₐ)/(2π)</th>
<th>dc₃₄/dₐ</th>
<th>(dc₃₄/dₐ)/(π/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>1,9446</td>
<td>0,7870</td>
<td>1,2261</td>
<td>0,7806</td>
</tr>
<tr>
<td>P</td>
<td>1,2422</td>
<td>1,1526</td>
<td>1,6960</td>
<td>1,0797</td>
</tr>
<tr>
<td>S</td>
<td>0,8623</td>
<td>0,6465</td>
<td>1,2605</td>
<td>0,8025</td>
</tr>
<tr>
<td>B8</td>
<td>0,9156</td>
<td>1,1007</td>
<td>1,2548</td>
<td>0,7988</td>
</tr>
<tr>
<td>M</td>
<td>0,7697</td>
<td>0,9183</td>
<td>1,5684</td>
<td>0,9921</td>
</tr>
<tr>
<td>G</td>
<td>0,8356</td>
<td>0,5070</td>
<td>0,5413</td>
<td>0,3365</td>
</tr>
<tr>
<td>R</td>
<td>0,8657</td>
<td>1,7007</td>
<td>0,6369</td>
<td>0,4049</td>
</tr>
<tr>
<td>C</td>
<td>1,3886</td>
<td>0,6573</td>
<td>0,2120</td>
<td>0,1360</td>
</tr>
<tr>
<td>TC</td>
<td>5,5691</td>
<td>0,8864</td>
<td>-0,8254</td>
<td>-0,5252</td>
</tr>
</tbody>
</table>

Tabelle 8.3: Steigungsfaktoren der stationären Luftkraftbeiwerte

In Anhang A und B sind die experimentell nach der Methode der erzwungenen Schwingungen ermittelten Flatterderivativa für den Vergleich mit den numerischen Ergebnissen für die folgende Kombination maßgebender Parameter angegeben:

\[
Re = 200.000 \\
\hat{h} = 0,04B \\
\hat{\alpha} = 5°
\]

Der maximale relative Fehler, der sich durch die Fehlerabweichungen der verwendeten Komponenten ergibt, wird von BERGMANN [7] mit 1,6 bis 2,0 % für die stationären und instationären Kraftbeiwerte angegeben.

In Tabelle 8.3 sind die experimentell ermittelten Steigungsfaktoren der stationären Luftkraftbeiwerte angegeben, die für die Zeitbereichssimulation (Gleichungen 5.13-5.15) benötigt werden.

Profile, die ein tragflügelähnliches Flatterverhalten zeigen, wie die Profile GB, P, B8 und M besitzen auch Steigungsfaktoren ähnlicher Größe. Als einziges Profil weist das
Profil der Tacoma Brücke (TC) eine abweichende Steigungsrichtung für den stationären Luftkraftbeiwert c_M auf. Für die Zeitbereichssimulation muss beachtet werden, dass dieser positiv in die Formulierung eingehen muss, da die Übergangsfunktionen in dieser Arbeit aus den komplexen Flatterderivativen berechnet wurden. Diese werden aus den bewegungsinduzierten Luftkräften so bestimmt, dass die Luftkräfte durch die theoretischen Steigungsfaktoren 2π und $\pi/2$ geteilt werden, da diese in den komplexen Flatterderivativen enthalten sind.

Abbildung 8.5: Flatterfrequenzen berechnet mit den Strukturdaten des Datensatzes 2 (Anhang F) in Abhängigkeit von der Reynolds Zahl
Abbildung 8.6: Flatterfrequenzen berechnet mit den Strukturdaten des Datensatzes 1 (Anhang F) in Abhängigkeit von der Reynoldszahl

8.3 Die Methode der freien gekoppelten Schwimgung

8.3.1 Einführung

Im Rahmen dieser Arbeit wurde das Rechteckprofil R zusätzlich mit der Methode der freien gekoppelten Schwimgung untersucht. SCANLAN und TOMKO [85] beschreiben eine Versuchsmethode, die sich aus drei unterschiedlichen Versuchsabschnitten zusammensetzt:

1. Reine h-Schwingung unter Blockade des α-Freiheitsgrades
2. Reine α-Schwingung unter Blockade des h-Freiheitsgrades
3. Gekoppelte h- und α-Schwingung
Abbildung 8.7: Flatterfrequenzen berechnet mit den Strukturdaten des Datensatzes 2 (Anhang F) in Abhängigkeit von den Bewegungsamplituden mit den Abkürzungen für die Amplituden $y_2(4,8) = h=2\text{mm}(4\text{mm}, 8\text{mm})$, $a_2(5,8) = \alpha = 2(5^\circ, 8^\circ)$

Mit Versuchsabschnitt (1) können die Flatterderivativa $c'_{h\theta}$ und $c''_{h\theta}$ ermittelt werden, während aus Versuchsabschnitt (2) die Flatterderivativa $c'_{\alpha\alpha}$ und $c''_{\alpha\alpha}$ folgen. Mit Versuchsabschnitt (3) werden dann die Flatterderivativa $c'_{h\alpha}$, $c''_{h\alpha}$, $c'_{\alpha h}$ und $c''_{\alpha h}$ ermittelt.

8.3.2 Versuchsaufbau

Abbildung 8.9: Experimenteller Aufbau der Methode der freien gekoppelten Schwingungen

lenkungen als Störung aufgebracht. Diese sind in Tabelle 8.4 aufgelistet.

<table>
<thead>
<tr>
<th>Anfangsbedingung</th>
<th>Amplituden</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>$h_0 = 8.9$ mm; $\alpha_0 = 0.275^\circ$</td>
</tr>
<tr>
<td>A 2</td>
<td>$h_0 = 18.57$ mm; $\alpha_0 = 0.17^\circ$</td>
</tr>
<tr>
<td>A 3</td>
<td>$h_0 = 4.16$ mm; $\alpha_0 = 1.15^\circ$</td>
</tr>
</tbody>
</table>

Tabelle 8.4: Untersuchte Anfangsbedingungen
8.3.3 Parameteridentifikation im Zeitbereich

Bei der Methode der erzwungenen Schwingungen sind die Lösung und die Strukturparameter der Schwingungsdifferentialgleichung bekannt. Durch Vorgabe einer harmonischen Bewegung konstanter Amplitude sind Amplitude, Dämpfungsmaß und Bewegungsfrequenz eindeutig bestimmt. Somit sind auch alle Eigenschaften des Lösungsvektors $y(t)$ bekannt. Der daraus resultierende Luftkraftvektor $L(t)$, also die rechte Seite, wird direkt gemessen. Aus dem Lösungsvektor und dem Luftkraftvektor lassen sich die Flatterderivativa direkt bestimmen. Deshalb bezeichnet man dies als "direktes Problem", da das Versuchsresultat genau die gesuchte Lösung $y(t)$ ist.

Die Auswertung der Versuche nach der Methode der freien gekoppelten Schwingung ermittelt die Parameter der Schwingungsdifferentialgleichung aus dem Ausgangssignal $x(t)$. Diese Aufgabenstellung bezeichnet man als inverses Problem, weil aus dem Versuchsergebnis auf die Systemeigenschaften geschlossen wird. Verfahren, die aus dem Lösungsvektor $x(t)$ eines Systems die Parameter des zugehörigen mathematischen Modells ermitteln, bezeichnet man als Parameteridentifikationsverfahren. Erst die verschiedenen Fragestellungen aus der angewandten Mathematik motivierten in neuerer Zeit zur mathematischen Unterscheidung von direkten und inversen

8.3.4 Parameteridentifikation der Struktureigenschaften

\[M \ddot{x} + K \dot{x} = 0 \quad \text{(8.1)} \]

ist ein mathematisches Modell zur Beschreibung von Schwingungen ohne Wind. Mit Hilfe des Schnittprinzips von D’Alembert werden die zeitveränderlichen Kräfte, Massen-, Trägheits- und Dämpfungskräfte, freigeschnitten. Die Gleichgewichts betrachtungen für die entsprechenden Freiheitsgrade ergeben für das System im Vakuum ein System von \(n \) Gleichungen, in diesem Fall \(n = 2 \). Die Größen der Kräfte je Freiheitsgrad werden durch die folgenden physikalischen Größen beeinflusst:

Freiheitsgrad \(h \):
- Masse
- Lehrsches Dämpfungsmaß \(\xi \approx g_h/2 \)
- Vertikalfedersteifigkeit \(K_h \)

Freiheitsgrad \(\alpha \):
- Massenträgheitsmoment
- Lehrsches Dämpfungsmaß \(\xi \approx g_\alpha/2 \)
- Rotationsfedersteifigkeit \(K_\alpha \)

Diese Modellparameter werden durch den Versuchsaufbau vorgegeben. Durch die Wahl der Federn, der Geometrie der Aufhängung, dem Massenträgheitsmoment und der Masse des Versuchsquerschnittes kann die Größenordnung der Kräfte schon beim
Experimente

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Wert</th>
<th>Identifikationsmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>[kg]</td>
<td>6.538</td>
<td>Wiegen</td>
</tr>
<tr>
<td>k_h</td>
<td>[N/m]</td>
<td>1801</td>
<td>Ausschwingversuch</td>
</tr>
<tr>
<td>k_α</td>
<td>[Nm]</td>
<td>113.5</td>
<td>mit bekanntem k_h nach Gleichung 8.2</td>
</tr>
<tr>
<td>θ</td>
<td>[kgm2]</td>
<td>0.1359</td>
<td>aus Ausschwingversuch mit bekanntem k_α</td>
</tr>
</tbody>
</table>

Tabelle 8.5: Eigenschaften des Brückenmodells, welches bei den Versuchen nach der Methode der freien gekoppelten Schwingungen verwendet wurde

<table>
<thead>
<tr>
<th>Anfangsbedingungen</th>
<th>ξ_h</th>
<th>ξ_α</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>0.008</td>
<td>0.0112</td>
</tr>
<tr>
<td>A 2</td>
<td>0.006</td>
<td>0.0133</td>
</tr>
<tr>
<td>A 3</td>
<td>0.0148</td>
<td>0.0146</td>
</tr>
</tbody>
</table>

Tabelle 8.6: Lehr’sche Dämpfungsmaße der drei Versuchsaufbauten

$$K_\alpha = K_h a^2$$ \hspace{1cm} (8.2)

a bezeichnet den Abstand der Feder von der Drehachse.

8.3.5 Identifikation der Flatterderivativa aus den Zeitverläufen der Schwingung

Der Nachteil der Versuche mit freien Schwingungen ist, dass die Flatterderivativa sich nicht wie bei der Methode der erzwungenen Schwingungen direkt messen lassen. Aus dem Versuch wird lediglich ein zeitdiskretes Signal gewonnen, welches die Amplituden in der Abtastrate aufzeichnet.

Zwei Probleme werden von IWAMOTO [50] diskutiert: Zum einen der Mangel an Eindeutigkeit und zum anderen das Problem, dass bei vertikaldominanten Schwingungen bei hohen Windgeschwindigkeiten die Dämpfung so groß wird, dass die Zeitsignale nicht lang genug sind. Er zeigt als Lösung für das zweite Problem, dass eine Vergrößerung der Masse und des Massenträgheitsmomentes bei höheren kritischen Windgeschwindigkeiten zu genauer Ergebnissen in der Nähe der kritischen Geschwindigkeit führt.

Für die vollständig gekoppelten Luftkräfte ergeben sich die Gleichungen:

\[
A(t) = \pi \rho k^2 u_\infty [c_{ah}(k_1)h_{\omega_1} + c_{ah}(k_2)h_{\omega_2} + b_{ch}(k_1)\alpha_{\omega_1} + b_{ch}(k_2)\alpha_{\omega_2}] \tag{8.3}
\]

\[
M(t) = \pi \rho k^2 u_\infty [c_{ch}(k_1)h_{\omega_1} + c_{ch}(k_2)h_{\omega_2} + c_{ch}(k_1)\alpha_{\omega_1} + c_{ch}(k_2)\alpha_{\omega_2}] \tag{8.4}
\]

So müssten insgesamt 18 Parameter bestimmt werden. IWAMOTO beobachtete, dass die Kopplung von Torsions- und Biegeschwingungen in nichtkritischen Bereichen schwach ist. Bei der Vertikalschwingung dominiert die Frequenz des Biegeastes und bei der Rotationsschwingung die Frequenz des Torsionsastes der vollständigen Lösung des Eigenwertproblems. So reduzieren sich die Bewegungsgleichungen 8.3 und 8.4 zu

\[
A(t) = \pi \rho k^2 u_\infty [c_{ch}(k_1)h_{\omega_1} + b_{ch}(k_2)\alpha_{\omega_2}] \tag{8.5}
\]

\[
M(t) = \pi \rho k^2 u_\infty [c_{ch}(k_1)h_{\omega_1} + c_{ch}(k_2)\alpha_{\omega_2}] \tag{8.6}
\]

Diese Annahme liegt auch den im folgenden Abschnitt beschriebenen Auswertungsmethoden zugrunde.
8.3.6 Bestimmung der Bewegungsparameter

Um die Flatterderivativa aus den diskreten Zeitsignalen der freien Schwingungen bestimmen zu können, müssen zunächst die Parameter der Schwingungsbewegung bestimmt werden. Die Bewegung lässt sich im Zeitbereich unter Vernachlässigung turbulenter Schwankungsbewegungen und unter Vernachlässigung der oben genannten Kopplung der Bewegungen im unterkritischen Fall wie folgt beschreiben:

Reelle Darstellung

\[\tilde{h}(t) = \hat{h}_h e^{\lambda_h t} \cos(\omega_1 t + \varphi_{hh}) + \hat{h}_a e^{\lambda_a t} \cos(\omega_2 t + \varphi_{ha}) \quad (8.7) \]

\[\tilde{\alpha}(t) = \hat{\alpha}_h e^{\lambda_h t} \cos(\omega_1 t + \varphi_{h\alpha}) + \hat{\alpha}_a e^{\lambda_a t} \cos(\omega_2 t + \varphi_{a\alpha}) \quad (8.8) \]

\(\hat{h}_i, \hat{\alpha}_i \) sind die Amplituden, \(\lambda_i \) die Dämpfungsparameter, \(\omega_1 \) und \(\omega_2 \) die Eigenfrequenzen der Vertikalbewegung bzw. der Rotationsbewegung und \(\varphi_{ij} \) die Phasenversätze der einzelnen Bewegungsanteile mit \(i, j = h, \alpha \).

Euler-Schreibweise

\[\tilde{h}(t) = \tilde{C}_1 e^{i \vartheta_1 t} e^{\varphi_{1h}} + \tilde{C}_4 e^{i \vartheta_2 t} e^{\varphi_{1a}} + \tilde{C}_3 e^{i \vartheta_2 t} e^{\varphi_{2h}} + \tilde{C}_2 e^{i \vartheta_1 t} e^{\varphi_{2a}} \quad (8.9) \]

\[\tilde{\alpha}(t) = \tilde{C}_1 e^{i \vartheta_1 t} e^{\varphi_{1h}} + \tilde{C}_4 e^{i \vartheta_1 t} e^{\varphi_{2h}} + \tilde{C}_3 e^{i \vartheta_2 t} e^{\varphi_{2a}} + \tilde{C}_2 e^{i \vartheta_2 t} e^{\varphi_{2a}} \quad (8.10) \]

\(\tilde{C}_i, i = 1, \ldots, 4 \) sind die Amplituden, \(\vartheta_1 \) und \(\vartheta_2 \) die komplexen Eigenfrequenzen der Vertikalbewegung bzw. der Rotationsbewegung mit ihren konjugiert komplexen Werten \(\vartheta_1^* \) und \(\vartheta_2^* \) und \(\varphi_i, i = 1, \ldots, 4 \) die Phasenversätze der einzelnen Bewegungsanteile.

Beide Schreibweisen beschreiben die Flatterbewegung unter den oben genannten Einschränkungen der Kopplung im unterkritischen Strömungszustand. Letztere Darstellung eignet sich aufgrund ihrer Einfachheit besser für die Bildung der Ableitungen zur Ermittlung der Geschwindigkeit und der Beschleunigung, die für die Berechnung der Flatterderivativa benötigt werden (siehe Abschnitt 8.3.7).

Das Levenberg-Marquardt-Verfahren beruht ebenfalls auf der Methode der kleinsten Quadrate. Es wird vom Programm Matlab, welches im Rahmen dieser Arbeit für alle Auswertungen benutzt wurde, als Optimierungs-Tool zur Verfügung gestellt.

Die mit dem Levenberg-Marquardt-Verfahren ermittelten Parameter der Schwingungsantwort sind im Vergleich mit den mit der MITD-Methode ermittelten Parametern im Abschnitt 8.3.8 angegeben.

Das Levenberg-Marquardt-Verfahren und die MITD-Methode lassen sich ausschließlich für abklingende Schwingungen anwenden. Im kritischen und überkritischen Fall können Frequenzen und Dämpfungsmodule nur durch eine Umkehr des Zeitsignals \(X(t) \) in \(X(t_{inv}) \) mit \(t_{inv} = (t, t - \Delta t, t - 2\Delta t, ..., 0) \) bestimmt werden.

8.3.7 Die Berechnung der aerodynamischen Steifigkeits- und Dämpfungsmatrix

Aus den durch die Auswertung des Zeitsignals berechneten Bewegungsparametern müssen mit Kenntnis der Systemeigenschaften des Modells ohne Wind die aerodynamische Steifigkeits- und Dämpfungsmatrix bestimmt werden.

Sind die parametrisierten Funktionen der Schwingungsbewegungen \(\tilde{h}(t) \) und \(\tilde{\alpha}(t) \) entsprechend den Gleichungen 8.7 und 8.8 mit Hilfe der MITD-Methode oder des Levenberg-Marquardt-Verfahrens ermittelt, lassen sich daraus auch deren Ableitungen, also die Gleichungen für die Geschwindigkeit und die Beschleunigung bestimmen.

In der Zeit-Raum-Formulierung lautet der Bewegungsvektor der Näherungslösung

\[
\mathbf{Y} = \begin{pmatrix} \tilde{x} \\ \dot{\tilde{x}} \end{pmatrix} = \begin{pmatrix} \tilde{h} \\ \ddot{\tilde{h}} \\ \tilde{\alpha} \\ \ddot{\tilde{\alpha}} \end{pmatrix}
\]

und der Geschwindigkeitsvektor

\[
\dot{\mathbf{Y}} = \begin{pmatrix} \ddot{\tilde{x}} \\ \dddot{\tilde{x}} \end{pmatrix} = \begin{pmatrix} \ddot{\tilde{h}} \\ \dddot{\tilde{h}} \\ \ddot{\tilde{\alpha}} \\ \dddot{\tilde{\alpha}} \end{pmatrix}
\]

Die Bewegungsungleichung der Flatterschwingung lautet in der Zeit-Raum-Formulierung

\[
\dot{\mathbf{Y}} = \mathbf{A}^{ae} \mathbf{Y}
\]

mit der aeroelastischen Gesamtmatrix

\[
\mathbf{A}^{ae} = \begin{pmatrix} 0 & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K}_{ae} & -\mathbf{M}^{-1}\mathbf{C}_{ae} \end{pmatrix}
\]
<table>
<thead>
<tr>
<th>Anfangsbedingung</th>
<th>Kritische Windgeschwindigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>14,0 m/s</td>
</tr>
<tr>
<td>A 2</td>
<td>13,3 m/s</td>
</tr>
<tr>
<td>A 3</td>
<td>13,3 m/s</td>
</tr>
</tbody>
</table>

Tabelle 8.7: Kritische Windgeschwindigkeit

Nach Einsetzen der im Vorfeld ermittelten Strukturparameter lassen sich jetzt die acht Flatterderivata für jedes Zeitsignal x bestimmen.

Im überkritischen Fall ist eine Identifizierung der Flatterderivata nicht mehr möglich, da die beiden Bewegungen gekoppelt sind und nur noch vier Bestimmungsgrößen identifiziert werden können.

8.3.8 Versuchsergebnisse

Die Geschwindigkeit wurde mit $\Delta u_\infty = 0,7 m/s$ gesteigert, so dass der wirkliche Einfluss der Anfangsbedingungen auch durchaus noch kleiner sein kann. Die Genauigkeit dieses Versuchs ist wegen der verwendeten Aufnehmer und der aus wenigen durchgeführten Messungen relativ gering. Ziel dieses Versuches war es aber, die Prognose der kritischen Windgeschwindigkeit auf Basis der Methode der erzwungenen Schwin-
gungen an einem frei schwingenden System zu prüfen. Hierfür war der Versuch trotz
seines einfachen Aufbaus gut geeignet.

Abbildung 8.11: Vergleich der mit verschiedenen Methoden identifizierten Bewegungs-
parameter ω_i und λ_i, $i = 1, 2$

8.4 Vergleich der angewendeten Versuchsmethoden

Im Rahmen dieser Arbeit wurden für die Verifikation der numerischen Ergebnisse Ver-
suche mit der Methode der erzwungenen Schwingungen und der Methode der freien
gekoppelten Schwingungen durchgeführt. Beide Methoden dienen zur Ermittlung der
Flatterderivative und der kritischen Windgeschwindigkeit, wobei diese beiden Ziele
von einer der beiden Methoden jeweils nur indirekt erreicht werden kann. Während
die Methode der freien gekoppelten Schwingung direkt auf die kritische Windge-
schwindigkeit führt, führt die Methode der erzwungenen Schwingungen direkt auf die
Flatterderivative.
Abbildung 8.12: Zeitverlauf der Schwingung im überkritischen Fall (v=16.1 m/s)

Li [64] vergleicht experimentell im Wasserkanal ermittelte Flatterderivativa nach der Methode der erzwungenen Schwingungen mit von Scanlan/Tomko [85] im Windkanal mit der Methode der freien gekoppelten Schwingung ermittelten Flatterderivativa. Er stellt zum Teil große Abweichungen fest, die er vor allem auf die mangelnde Qualität der Identifikationsmethoden bei der Methode der freien gekoppelten Schwingungen zurückführt.

Angewendete Verfahren	Methode der erzwungenen Schwingungen	Methode der freien gekoppelten Schwingungen
Ergebnis | Direkte und eindeutige Bestimmung der bewegungsinduzierten Luftkräfte | Direkte und eindeutige Bestimmung der kritischen Windgeschwindigkeit
Vorteile | Einfache Auswertung (FFT) | Einfacher Versuchsaufbau
Nachteile | Komplizierter Versuchsaufbau | Indirekte und nicht eindeutige Bestimmung der Flatterderivativa durch Parameteridentifikation im Zeitbereich (MITD)

Tabelle 8.8: Vergleich der Versuchsmethoden

alle drei untersuchten Querschnitte eine Neigung zum Rotationsflattern und zwar bereits bei der gleichen kritischen Windgeschwindigkeit wie das H-Profil der Tacoma Brücke (Profil TC). Dies deckt sich nicht mit den Ergebnissen dieser Arbeit, weder experimentell noch numerisch.

In Tabelle 8.8 sind die Vor- und Nachteile der beiden Methoden abschließend zusammengefasst.
Abbildung 8.13: Vergleich der Flatterderivativa des Profils R
Kapitel 9

Ergebnisse der numerischen Berechnung bewegungsinduzierter Luftkräfte

9.1 Einleitung

Danach werden die bewegungsinduzierten Kräfte und ihr Einfluss auf den Betrag der kritischen Windgeschwindigkeit für verschiedene Profilklassen diskutiert. Hierbei werden trapezförmige Vollquerschnitte mit und ohne seitliche Leitbleche, Rechteckquerschnitte mit unterschiedlichen Schlankheiten, Querschnitte mit außenliegenden Hauptträgern (Π-Querschnitte) und noch einige spezielle Querschnittsformen wie H-Querschnitte (Tacoma Narrows) und ein offener Querschnitt unterschieden. Die Pro-
file sind jeweils in Übersichten in den verschiedenen Abschnitten dargestellt.

Im Anhang A sind alle Ergebnisse detailliert angegeben. Einleitend sind dort die Brückenamen der unterschiedlichen Profile unter Nennung der jeweiligen Quelle der Querschnittsabmessungen genannt. Für jedes untersuchte Brückenprofil ist zunächst eine Zeichnung mit den Querschnittsabmessungen gegeben. Die Querschnittsabmessungen sind alle auf eine Breite von einem Meter bezogen. Danach sind die Schlankeheit und die beiden numerisch ermittelten Steigungen der stationären Luftkraftbeiwerte \(dc_A/d\alpha \) und \(dc_M/d\alpha \) angegeben. Die numerisch berechneten Flatterderivativa der Brücken sind für jedes Profil vollständig angegeben. Desweiteren sind die Parameter der profilabhängigen Zirkulationsfunktion gemäß der Gleichungen 5.11 und 5.12 angegeben. Mit diesen Werten können die numerisch ermittelten Flatterderivativa funktional im Bereich \(0,2 \leq k \leq 1,0 \) beschrieben werden (siehe hierfür auch Abschnitt 5.3). Für einige Querschnitte eignet sich diese Werte auch für eine Zeitbereichssimulation (Abschnitt 9.9). In Anhang C sind die kritischen Windgeschwindigkeiten \(u_{krit} \) der neun experimentell untersuchten Profile (Nachweismethode B) mit den numerisch untersuchten (Nachweismethode C) verglichen. Hierbei wurde der Datensatz 1 (Anhang F) verwendet und das Frequenzverhältnis \(\varepsilon \) variiert. Durch die Variation wird die Übereinstimmung der kritischen Windgeschwindigkeit in einem \(k \)-Bereich und nicht nur für eine diskrete kritische reduzierte Frequenz \(k_{krit} \) überprüft.

9.2 Vergleich von numerischen und experimentellen Flatterderivativa

In Tabelle 9.1 sind die kritischen Windgeschwindigkeiten verglichen, die unter Einbeziehung von numerischen (Nachweismethode C) und experimentellen (Nachweismethode B) Flatterderivativa ermittelt wurden.

Das Profil GB ist als plattenähnlich nach Starossek [101] (siehe Kapitel 3.2.6) einzustufen. Die kritischen Windgeschwindigkeiten, die nach Nachweismethode B wie auch nach Nachweismethode C für dieses Profil für vier unterschiedlichen Datensätze (Anhang F) berechnet wurden, weichen weniger als 20 \% vom theoretisch ermittelten Wert nach Nachweismethode A ab. Lediglich für den Datensatz 8 (Anhang F) ist die Abweichung größer als 20 \%.

Das Profil S ist ebenfalls als plattenähnlich einzustufen. Die Berechnung nach Nachweismethode C ergibt wesentlich günstigere kritische Windgeschwindigkeiten als die nach Nachweismethode B. Hier stimmen die kritischen Windgeschwindigkeiten nach den Nachweismethoden B und C für ein als plattenähnlich eingestuftes Profil am wenigsten überein.

Die kritischen Windgeschwindigkeiten nach Nachweismethode B und C stimmen für die Profile M und B8 gut überein. Die Flatterstabilität dieser Profile ist geringer als die der Profile GB und S, sind aber noch als plattenähnlich einzustufen.
<table>
<thead>
<tr>
<th>Datensatz</th>
<th>Profil</th>
<th>Methode</th>
<th>u_{krit}</th>
<th>h_{krit}</th>
<th>u_{krit}</th>
<th>h_{krit}</th>
<th>u_{krit}</th>
<th>h_{krit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>num (C)</td>
<td>21,5</td>
<td>0,27</td>
<td>40,2</td>
<td>0,37</td>
<td>73,0</td>
<td>0,26</td>
<td>15,5</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>20,6</td>
<td>0,29</td>
<td>41,3</td>
<td>0,37</td>
<td>70,2</td>
<td>0,28</td>
<td>16,1</td>
</tr>
<tr>
<td>S</td>
<td>num (C)</td>
<td>25,3</td>
<td>0,22</td>
<td>48,0</td>
<td>0,26</td>
<td>85,6</td>
<td>0,18</td>
<td>31,5</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>21,4</td>
<td>0,27</td>
<td>42,5</td>
<td>0,33</td>
<td>72,1</td>
<td>0,25</td>
<td>18,4</td>
</tr>
<tr>
<td>M</td>
<td>num (C)</td>
<td>20,0</td>
<td>0,30</td>
<td>39,8</td>
<td>0,37</td>
<td>67,6</td>
<td>0,29</td>
<td>22,0</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>19,2</td>
<td>0,31</td>
<td>39,4</td>
<td>0,38</td>
<td>65,5</td>
<td>0,30</td>
<td>16,7</td>
</tr>
<tr>
<td>P</td>
<td>num (C)</td>
<td>18,7</td>
<td>0,32</td>
<td>36,9</td>
<td>0,40</td>
<td>63,5</td>
<td>0,31</td>
<td>22,8</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>19,7</td>
<td>0,30</td>
<td>38,3</td>
<td>0,38</td>
<td>66,4</td>
<td>0,29</td>
<td>20,2</td>
</tr>
<tr>
<td>R</td>
<td>num (C)</td>
<td>11,1</td>
<td>0,56</td>
<td>26,7</td>
<td>0,60</td>
<td>41,5</td>
<td>0,57</td>
<td>19,3</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>15,6</td>
<td>0,40</td>
<td>34,8</td>
<td>0,45</td>
<td>55,6</td>
<td>0,40</td>
<td>16,3</td>
</tr>
<tr>
<td>B8</td>
<td>num (C)</td>
<td>18,4</td>
<td>0,33</td>
<td>36,2</td>
<td>0,42</td>
<td>63,6</td>
<td>0,33</td>
<td>21,8</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>18,0</td>
<td>0,34</td>
<td>37,9</td>
<td>0,41</td>
<td>63,1</td>
<td>0,34</td>
<td>16,6</td>
</tr>
<tr>
<td>C</td>
<td>num (C)</td>
<td>12,0</td>
<td>0,54</td>
<td>25,4</td>
<td>0,67</td>
<td>45,7</td>
<td>0,54</td>
<td>14,8</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>8,0</td>
<td>0,81</td>
<td>19,7</td>
<td>0,87</td>
<td>29,0</td>
<td>0,89</td>
<td>15,3</td>
</tr>
<tr>
<td>TC</td>
<td>num (C)</td>
<td>7,4</td>
<td>0,89</td>
<td>20,0</td>
<td>0,9</td>
<td>29,8</td>
<td>0,88</td>
<td>14,6</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>7,4</td>
<td>0,88</td>
<td>19,4</td>
<td>0,88</td>
<td>29,0</td>
<td>0,87</td>
<td>22,5</td>
</tr>
<tr>
<td>G</td>
<td>num (C)</td>
<td>32,1</td>
<td>0,17</td>
<td>60,0</td>
<td>0,21</td>
<td>110,4</td>
<td>0,14</td>
<td>34,0</td>
</tr>
<tr>
<td></td>
<td>exp (B)</td>
<td>45,8</td>
<td>0,13</td>
<td>76,2</td>
<td>0,18</td>
<td>163,4</td>
<td>0,11</td>
<td>43,9</td>
</tr>
</tbody>
</table>

$H:B=1:\infty$ theo(A) tab. 9.1: Vergleich von numerisch und experimentell ermittelten Flatterderivativa für verschiedene Struktureigenschaften anhand der berechneten kritischen Windgeschwindigkeit, siehe Datensätze in Anhang F

Das Profil G (offenes Profil) weist die besten Stabilitäteigenschaften auf. Sowohl die Ergebnisse nach Nachweismethode B als auch nach Nachweismethode C

Tabelle 9.1: Vergleich von numerisch und experimentell ermittelten Flatterderivativa für verschiedene Struktureigenschaften anhand der berechneten kritischen Windgeschwindigkeit, siehe Datensätze in Anhang F
bestätigen dies. Die kritischen Windgeschwindigkeiten nach Nachweismethode B sind allerdings deutlich höher als die nach Nachweismethode C. Dies wird noch in Abschnitt 9.6.3 diskutiert.

Die Übereinstimmung zwischen Numerik und Experiment zwischen den kritischen Windgeschwindigkeiten ist gut. Die Stabilitäts Eigenschaften aller Profile werden durch die numerisch ermittelten Flatterderivativa gut erfasst. Lediglich für den Datensatz 8 (Anhang F) unterscheiden sich die nach Nachweismethode B ermittelten kritischen Windgeschwindigkeiten durchweg deutlich von der nach der Nachweismethode C ermittelten kritischen Windgeschwindigkeiten.

Die aufgrund ihrer geringen Abweichung von der theoretisch bestimmten kritischen Windgeschwindigkeit als plattenähnlich eingestuften Profile weisen ähnliche Werte $\frac{dc}{A}$ und $\frac{dc}{M}$ wie die theoretisch ermittelten Steigungsverhältnisse auf, was von Sta-Rössek als ein Kriterium für Plattenähnlichkeit bezeichnet wurde. Die Schlankeit des Profils allein scheint als Kriterium nicht ausreichend zu sein, siehe hierfür auch die rein numerische Untersuchung der Rechtecke mit verschiedenen Schlan- keiten in Abschnitt 9.5. Wichtiger scheint das Kriterium des gut definierten Staupunktes zu sein, über den alle als plattenähnlich eingestuften Profile verfügen, die aufgrund ihrer hohen Abweichung von der kritischen Windgeschwindigkeit als nicht plattenähnlich einzustufenden Profile jedoch nicht.

9.3 Trapezähnliche Vollquerschnitte

Abbildung 9.1: Übersicht über untersuchte trapezähnliche Vollquerschnitte

Abbildung 9.2: Zeitverläufe der Bewegungen und den daraus induzierten Luftkräften des Profils B9

Stabilitäts eigenschaften. Das Profil kann nach den Ergebnissen im Rahmen der vorliegenden Arbeit als plastenähnlich eingestuft werden, da die Flatterderivativa ähnliche Tendenzen aufweisen wie die theoretischen Flatterderivativa und die kritische Windgeschwindigkeit weniger als 20 % von der kritischen Windgeschwindigkeit abweicht, die mittels theoretischer Flatterderivativa ermittelt wird. Nach den beiden oben genannten Untersuchungen neigt das Profil zum Torsionsflattern, da das Flatterderivativum einen Nulldurchgang besitzt. Der Nulldurchgang liegt ungefähr bei der gleichen reduzierten Geschwindigkeit \(U_{\text{red}} \) (Gleichung 3.34), wie die des Profils TC der Tacoma Brücke, welches die schlechtesten Stabilitäts eigenschaften aller untersuchten Brückenprofile besitzt. Damit wären die Eigenschaften des Profils M noch schlechter einzuschätzen als die eines Rechtecks ähnlicher Abmessungen. Diesem Ergebnis wird mit den eigenen Versuchs- und Berechnungsergebnissen widersprochen.

Tabelle 9.2: Auf Basis numerischer Flatterderivativa berechnete kritische Windgeschwindigkeiten für verschiedene trapezähnliche Profile im Vergleich mit experimentellen Werten nach [61]

| Profil | $c_{W0}(\text{num})$ | $u_{krZ}(\text{exp})/u_{krZ}(\text{Selb.})|_{\text{m. 10\% Turb.}}$ | $u_{krZ}(\text{num})/u_{krZ}(\text{Selb.})$ |
|--------|---------------------|---|----------------------------------|
| GB | 0,032 | 0,989 | 0,98 |
| B2 | 0,0302 | 1,039 | 1,02 |
| B3 | 0,0288 | 1,108 [0,96] | 1,005 |
| B4 | 0,0338 | 1,000 [0,95] | 0,99 |
| B5 | 0,0225 | 1,034 [0,93] | 0,98 |
| B6 | 0,0208 | 1,046 [0,94] | 0,99 |
| B7 | 0,0208 | 1,034 [0,95] | 0,97 |

Zugrundelegung der im Rahmen dieser Arbeit numerisch ermittelten Flatterderivativa verglichen.

Zusätzlich ist in Tabelle 9.2 c_{W0}, der Widerstandsbeiwert für einen Anstellwinkel von 0°, angegeben. Die Größe der Luftkraft in lateraler Richtung, die mit Widerstandsbeiwert berechnet wird, ist ebenfalls eine wichtige Bemessunggröße für die Gesamtbrücke. Der Widerstandsbeiwert ist ebenfalls profilabhängig. Ein aerodynamisch geeignetes Profil muss einen geringen Widerstandsbeiwert und eine hohe kritische Windgeschwindigkeit besitzen. Das Profil GB besitzt im Vergleich zu den anderen Profile einen relativ hohen Widerstandsbeiwert.

Legt man die Strukturdaten des Hauptfeldes der Brücke über den großen Belt in Dänemark (Datensatz 6, Anhang F) zugrunde, errechnet sich die kritische Windgeschwindigkeit mit der SELBERG-Formel (Gleichung 4.47) zu 73,4 m/s. Berechnet man die kritische Windgeschwindigkeit nach Nachweismethode A, wie in Abschnitt 4.5 beschrieben, ergibt sich in guter Übereinstimmung mit der Selberg-Formel ein Wert von 73,9 m/s. Diese Windgeschwindigkeiten liegen weit über der Bemessungswindgeschwindigkeit der Brücke über den Großen Belt von 38,9 m/s [61].

Die numerischen Ergebnisse sind mit einer Turbulenzintensität in Strömungsrichtung von 5 % berechnet worden, während die Experimente von LARSEN im Windkanal mit einer Turbulenzintensität von 10 % durchgeführt worden sind. Die kritischen Windgeschwindigkeiten, die mit den in dieser Arbeit numerisch ermittelten Flatterderivativa berechnet wurden, liegen zwischen den Ergebnissen von turbulerter und laminarer Anströmung nach LARSEN. Werden die eigenen experimentellen Ergebnisse für den Querschnitt GB der Berechnung der kritischen Windgeschwindigkeit zugrundegelegt, ergeben sich unterschiedliche Verhältniszahlen $u_{krZ}(\text{exp})/u_{krZ}(\text{Selb.})$ im Bereich von $0,95 \div 1,00$. Legt man wie in der numerischen Simulation eine Reynoldszahl von $Re = 200,000$ und Amplituden von $h = 0,04$ und $\alpha = 5^\circ$ zugrunde, ergibt sich ein Quotient von 0,99, also eine Abweichung von 1% gegenüber dem theoretischen Ergebnis $u_{krZ}(\text{exp})/u_{krZ}(\text{Selb.})$.
von 1.0. Eine Abweichung gleichen Betrages ergibt sich zur numerischen Berechnung. Es sei an dieser Stelle nochmals bemerkt, dass bei den Experimenten im Wasserkanal ein Turbulenzgrad von unter 1% vorgelegen hat.

Zum Vergleich sind in Tabelle 9.3 die kritischen Windgeschwindigkeiten für die restlichen Profile aus Abbildung 9.1 angegeben, welche nicht von Larsen experimentell untersucht wurden. Außer den kritischen Windgeschwindigkeiten der Profile B8 und M liegen alle kritischen Windgeschwindigkeiten sehr nah an der mit der Selberg-Formel ermittelten kritischen Windgeschwindigkeit. Hier bestätigt sich wieder die Plattenähnlichkeit dieser Profile.

Iwamoto und Fujino untersuchen einen trapezähnlichen Vollquerschnitt im Windkanal. Die Eigenschaften des Versuchsaufbaus sind als Datensatz 7 in Anhang F gegeben. Sie bestimmen die kritische Windgeschwindigkeit im Experiment mit 18,9 m/s. Mit Nachweismethode A ergibt sich eine kritische Windgeschwindigkeit von 19,1 m/s. Die Schlankeit des Profils liegt bei \(H:B=1:8,7 \), die Form des Versuchsquerschnittes ähnelt aber sehr der Form der Profile B6 mit \(H:B=1:8,82 \) und B13 mit \(H:B=1:10,72 \). Unter Verwendung der numerischen Flatterderivativa ergibt sich eine kritische Windgeschwindigkeit von 19,3 m/s für Profil B6 und 19,8 m/s für Profil B13. Hierbei erhält man unter Verwendung der theoretischen Flatterderivativa sogar eine bessere Näherungslösung als nach Nachweismethode C. Angemerkt werden muss aber, dass die reduzierte Frequenz bei \(k=0,18 \) liegt, also außerhalb des untersuchten \(k \)-Bereiches von 0,2 ≤ \(k \) ≤ 1,0. Hier werden die Werte der Flatterderivativa extrapoliert.
9.4 Trapezähnliche Vollquerschnitte mit seitlichen Leitblechen

Im Rahmen dieser Arbeit wurden mehrere Profile mit seitlichen Leitblechen untersucht. Die untersuchten Profile sind in einer Übersicht in Abbildung 9.4 dargestellt.

Abbildung 9.3: Zeitverlauf des Druckes in verschiedenen Punkten auf der Profiloberfläche des Querschnitts GB
Numerische Simulationsergebnisse

In Tabelle 9.4 sind die kritischen Windgeschwindigkeiten für die Datensätze 1 und 2 (Anhang F) verglichen. Die Schlankheit des Profils hat keinen signifikanten Einfluss auf die kritische Windgeschwindigkeit. Positiv beeinflusst die Länge der seitlichen Leitbleche das Flatterverhalten. Zum Vergleich betragen die Windgeschwindigkeiten nach der Nachweismethode A 22,1 m/s für Datensatz 1 (Anhang F) und 43,1 m/s für Datensatz 2 (Anhang F).

Zusammenfassend sei festgestellt, dass durch die Anordnung von seitlichen Leitblechen bei Hauptträgerquerschnitten eine Steigerung der aerelasticen Stabilität erreicht wird. Dies zeigen sowohl numerische als auch experimentelle Ergebnisse.

Tabelle 9.4: Kritische Windgeschwindigkeiten der trapezförmigen Vollquerschnitte mit seitlichen Leitblechen

<table>
<thead>
<tr>
<th>Profil</th>
<th>Datensatz (Anhang F)</th>
<th>k_{red}</th>
<th>ω_1</th>
<th>U_{red}</th>
<th>u_{krit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>0.22</td>
<td>0.935</td>
<td>14.27</td>
<td>25.27</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>0.26</td>
<td>0.814</td>
<td>11.95</td>
<td>47.98</td>
</tr>
<tr>
<td>L1</td>
<td>1</td>
<td>0.23</td>
<td>0.95</td>
<td>13.64</td>
<td>24.54</td>
</tr>
<tr>
<td>L1</td>
<td>2</td>
<td>0.27</td>
<td>0.834</td>
<td>11.63</td>
<td>47.81</td>
</tr>
<tr>
<td>L2</td>
<td>1</td>
<td>0.24</td>
<td>0.956</td>
<td>13.00</td>
<td>23.53</td>
</tr>
<tr>
<td>L2</td>
<td>2</td>
<td>0.29</td>
<td>0.868</td>
<td>10.74</td>
<td>45.97</td>
</tr>
<tr>
<td>L3</td>
<td>1</td>
<td>0.24</td>
<td>0.95</td>
<td>13.10</td>
<td>23.63</td>
</tr>
<tr>
<td>L3</td>
<td>2</td>
<td>0.29</td>
<td>0.86</td>
<td>10.83</td>
<td>45.94</td>
</tr>
</tbody>
</table>
Abbildung 9.4: Übersicht über numerisch untersuchte trapezähnliche Vollquerschnitte mit Leitblech

9.5 Rechteckquerschnitte

9.5.1 Vergleich von Rechteckquerschnitten unterschiedlicher Schlankheit

Abbildung 9.5: Übersicht über untersuchte Rechteckquerschnitte

Im Rahmen dieser Arbeit wurden insgesamt fünf Rechteckquerschnitte mit unterschiedlichen Schlankheiten numerisch untersucht: \(H:B = 1:4 \) (R4), 1:8 (R), 1:16 (R16), 1:25 (P) und 1:200 (R200). Die unendlich dünne Platte wird durch die analytische Lösung von Theodorsen beschrieben und stellt damit den oberen Grenzwert der Schlankheiten dar.

Mit zunehmender Schlankheit muss sich die kritische Windgeschwindigkeit von Rechteckquerschnitten der analytischen Lösung von Theodorsen nähern.
Abbildung 9.6: Vergleich der Flatterderivativa der untersuchten Rechteckquerschnitte für den Freiheitsgrad Biegung

Torsionsflattern bei niedriger Geschwindigkeit	Rechteck 1:5
Torsionsflattern bei hoher Geschwindigkeit	Rechteck 1:10
gekoppeltes Flattern	Rechteck 1:20

Tabelle 9.5: Klassifikation des Flatterverhaltens nach MATSUMOTO [65]

Diese Klassifizierung beschreibt aber lediglich phänomenologisch die unterschiedlichen Erscheinungsformen des Flatterns. Wie im Rahmen dieser Arbeit ausgeführt, kann das Flattern in allen seinen Erscheinungsformen mit einem theoretischen An-
satz, der vollständigen Lösung, beschrieben werden.

In Abbildung 9.6 sind die Flatterderivativa von Rechtecken verschiedener Schlankheit gezeigt. An den Flatterderivativa c''_α und c''_h lässt sich der Einfluss der Schlankheit von Rechteckquerschnitten auf die Flatterstabilität erkennen. Je schlanker das Profil

Abbildung 9.7: Zeitabhängige Druckverteilung um Profil P
ist, desto stärker nähern sich die Derivativa den Derivativa der unendlich dünnen Platte an, welche durch die analytische Lösung von THEODORSEN, in der Abbildung gestrichelt dargestellt, beschrieben werden. Ist das Profil sehr schlank, neigt es nicht mehr zum Torsionsflattern, sondern ausschließlich zum gekoppelten Flattern, was daran zu erkennen ist, dass schlanke Rechtecke wie das Profil P keinen Nulldurch-

Abbildung 9.8: Zeitverlauf des Druckes in verschiedenen Punkten auf der Profiloberfläche des Querschnitts P
Tabelle 9.6: Kritische Windgeschwindigkeiten für die verschiedenen Rechteckquerschnitte berechnet mit den Strukturdatensätzen 1, 2 und 6 (Anhang F) mit Nachweismethode C

<table>
<thead>
<tr>
<th>Profil</th>
<th>H/B</th>
<th>u_{krit}</th>
<th>k_{krit}</th>
<th>u_{krit}</th>
<th>k_{krit}</th>
<th>u_{krit}</th>
<th>k_{krit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4</td>
<td>1.4</td>
<td>6.71</td>
<td>0.96</td>
<td>17.4</td>
<td>0.97</td>
<td>25.8</td>
<td>0.97</td>
</tr>
<tr>
<td>R</td>
<td>1.8</td>
<td>11.1</td>
<td>0.57</td>
<td>26.7</td>
<td>0.6</td>
<td>41</td>
<td>0.56</td>
</tr>
<tr>
<td>R16</td>
<td>1.16</td>
<td>15.1</td>
<td>0.4</td>
<td>30.5</td>
<td>0.51</td>
<td>52.7</td>
<td>0.42</td>
</tr>
<tr>
<td>P</td>
<td>1.25</td>
<td>18.7</td>
<td>0.31</td>
<td>36.9</td>
<td>0.4</td>
<td>63.1</td>
<td>0.31</td>
</tr>
<tr>
<td>THEODORSEN</td>
<td>1:∞</td>
<td>22.1</td>
<td>0.264</td>
<td>43.1</td>
<td>0.33</td>
<td>74</td>
<td>0.25</td>
</tr>
</tbody>
</table>

In Tabelle 9.6 sind die kritischen Windgeschwindigkeiten, die mit den Strukturdatensätzen 1, 2 und 6 mit der vollständigen Lösung (Abschnitt 4.5) nach Methode C berechnet wurden, für die Rechteckprofile angegeben. Je schlanker das Rechteckprofil ist, desto höher ist die kritische Windgeschwindigkeit u_{krit}. Somit besitzen Rechtecke größerer Schlankheit bessere aerodynamische Stabilitäts Eigenschaften.

kompomponente wird zunehmend reell.

Tabelle 9.7: Eigenvektoren der Rechteckquerschnitte

<table>
<thead>
<tr>
<th>H:B</th>
<th>x mit Datensatz 1 (Anhang F)</th>
<th>x mit Datensatz 2 (Anhang F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:4</td>
<td>$h: \alpha$</td>
<td>$0.22 - 0.09i; 1^T$</td>
</tr>
<tr>
<td>1:8</td>
<td>$h: \alpha$</td>
<td>$0.3402 - 0.1132i; 1^T$</td>
</tr>
<tr>
<td>1:16</td>
<td>$h: \alpha$</td>
<td>$0.6046 - 0.0588i; 1^T$</td>
</tr>
<tr>
<td>1:25</td>
<td>$h: \alpha$</td>
<td>$(1.7516 - 0.0916i; 1^T)$</td>
</tr>
<tr>
<td>1:∞</td>
<td>$h: \alpha$</td>
<td>$(2.1433 + 0.5473i; 1^T)$</td>
</tr>
</tbody>
</table>

9.5.2 Einfluss der Bewegungsamplitude am Beispiel des Profils R4

Für das Profil R4 wurden die Flatterderivativa für unterschiedliche Bewegungsamplituden ermittelt. Die Ergebnisse sind in den Abbildung 9.9 und 9.10 gezeigt. In Abbildung 9.9 sind die Absolutwerte des Flatterderivativums $c_{\alpha \alpha}$ in Abhängigkeit von der reduzierten Geschwindigkeit U_{red} unter Variation der Bewegungsamplitude gezeigt. Mit zunehmender Bewegungsamplitude wird der Betrag des dimensionslosen Luftkraftmomentes, zunehmend kleiner. In Abbildung 9.10 ist $c''_{\alpha \alpha}$ in Abhängigkeit von der Bewegungsamplitude für verschiedene reduzierte Frequenzen aufgetragen. Wie in Abschnitt 4.6 ausgeführt, gibt bei stumpfen Querschnitten bereits der Nulldurchgang des Flatterderivativums $c_{\alpha \alpha}$ Aufschluss über die Flatterstabilität des untersuchten Querschnittes. Bei konstanter reduzierter Frequenz k, verringert sich der Betrag der aerodynamischen Dämpfung mit ansteigender Bewegungsamplitude. Dies zeigt sich am Wert des Flatterderivativums $c''_{\alpha \alpha}$. Dies führt dazu, dass die Schwingung für bestimmte k-Werte auf einen maximalen Wert zunehmen wird und dann konstant bleiben wird. Für $k = 0.5$ verbleibt das Flatterderivativum $c''_{\alpha \alpha}$ im gesamten untersuchten Amplitudenspektrum positiv. Das heißt, die Schwingung ist für alle untersuchten Bewegungsamplituden bei Vernachlässigung der Strukturdämpfung angefacht.
9.5.3 Vergleich der Flatterderivativa für den Querschnitt R anhand des Versuchs nach der Methode der freien gekoppelten Schwingungen

Der Querschnitt R wurde mit zwei unterschiedlichen Versuchsmethoden (siehe Abschnitte 8.2 und 8.3) und numerisch untersucht. In Abbildung 8.13 sind die nach diesen drei Methoden (Methode B1, B2 und C) ermittelten Flatterderivativa verglichen.

Das Profil R weist einen Nulldurchgang seines Flatterderivativums auf und neigt somit zum Torsionsflattern. Die Lage des Nulldurchgangs ist ein wichtiges Kriterium zur Beurteilung der Flatterstabilität. Das Flatterderivativum nach der Methode der erzwungenen Schwingungen weicht deutlich vom Flatterderivativa der anderen beiden Methoden ab.

Abbildung 9.10: Einfluss der Bewegungsamplitude auf c''_α (Profil R4) bei konstanter reduzierter Frequenz k

<table>
<thead>
<tr>
<th>Nachweismethode</th>
<th>Versuch</th>
<th>A</th>
<th>B(1)</th>
<th>B(2)**</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_{krit} [m/s]</td>
<td>15,3÷14</td>
<td>24,75</td>
<td>16,2</td>
<td>13,7</td>
<td>12,3</td>
</tr>
</tbody>
</table>

Tabelle 9.8: Kritische Windgeschwindigkeiten des Referenzversuchs, Datensatz 4 (Anhang F), berechnet nach den unterschiedlichen Nachweismethoden: * Flatterderivativa nach der Methode der erzwungenen Schwingungen, ** Flatterderivativa identifiziert aus den Versuchen nach der Methode der freien gekoppelten Schwingungen, bzw. direkt beobachtete Geschwindigkeit im grenzstabilen Zustand

kritische Windgeschwindigkeit nach Nachweismethode C unterhalb der im Versuch bestimmten kritischen Windgeschwindigkeit liegt. HORTMANNS [46] bestimmt die Flatterderivativa aus Versuchen nach der Methode der erzwungenen Schwingungen. Seine Ergebnisse zeigen eine gute Übereinstimmung mit den in Rahmen dieser Arbeit numerisch ermittelten Flatterderivativa. Legt man die Flatterderivativa nach HORTMANNS zugrunde, berechnet sich die kritische Windgeschwindigkeit zu 12,1 m/s.

Wertet man den Referenzversuch mit dem vereinfachten Nachweis des Torsionsflatters aus, erhält man unter Verwendung der numerisch ermittelten Flatterderivativa eine kritische Windgeschwindigkeit von 14,21 m/s. Setzt man für ω_α den im Referenzversuch vor Beginn des Flatterns gemessenen Wert von $\omega_\alpha = 27,4$ in Gleichung 4.43 ein, errechnet sich die kritische Windgeschwindigkeit zu 13,3 m/s. Die vereinfachte Annahme der Torsionseigenfrequenz anstatt der wirklichen Frequenz im Flatterfall führt zu einer etwas geringeren kritischen Windgeschwindigkeit. Da aber die Flatterfrequenz bei Querschnitten, welche eine Neigung zum Torsionsflattern besitzen, grundsätzlich nahe der Torsionseigenfrequenz des Systems liegt, ist die Abweichung
9.5.4 Rechteck mit Mittelsteg

Ein sehr markantes Flatterverhalten zeigt das schlanke Rechteckprofil R20v mit Mittelsteg. Der Verlauf des aerodynamischen logarithmischen Dämpfungsmaßes und der...

Das Profil R20v besitzt eine höhere kritische Windgeschwindigkeit als die unendlich dünne Platte nach Theodorsen. Für den Datensatz 1 (Anhang F) ergibt sich eine kritische Windgeschwindigkeit $u_{krit} = 23 \text{ m/s}$, für den Datensatz 2 (Anhang F) $u_{krit} = 44.9 \text{ m/s}$. Das Rechteckprofil 1:25 besitzt in beiden Fällen eine wesentlich geringere kritische Windgeschwindigkeit, siehe Tabelle 9.6. Damit wird durch den Mittelsteg eine Verbesserung der aerodynamischen Eigenschaften erreicht, die noch größer ist als die durch die Anordnung seitlicher Leitbleche.

9.6 Sonstige Querschnitte

Zusätzlich zu den trapezförmigen Vollquerschnitten und den Plattenquerschnitten wurden noch weitere im Brückenbau übliche Querschnitte untersucht. Fahrhauptplatten mit außenliegenden rechteckigen Längsträgern, der aerodynamisch ungünstige Querschnitt der Tacoma-Brücke (TC) und ein aerodynamisch günstiger offener Querschnitt (G) wurden mit den Mitteln der numerischen Stromungsmechanik und der Methode der erzwungenen Schwingungen untersucht. Die Querschnitte sind in Abbildung 9.12 gezeigt.

9.6.1 Π-Querschnitte

Abbildung 9.12: Übersicht über sonstige numerisch untersuchte Querschnitte

9.13 gezeigt. Hier werden die Flatterderivate der reinen Torsionssewingung eines aerodynamisch ungünstigen U-Querschnitts mit und ohne Leitblechen berechnet. Die aerodynamisch günstigen Leitbleche bewirken eine deutliche Erhöhung der kritischen Windgeschwindigkeit, welche bei geringer Systemdämpfung näherungsweise als diejenige Geschwindigkeit bestimmt werden kann, bei der die Funktion $c''_{\alpha\alpha}$ einen Null Durchgang vom negativen Bereich in den positiven aufweist. Die kritische Windgeschwindigkeit wird mehr als verdoppelt (siehe Abbildung 9.13). Trotz Leitblechen besitzt das $c''_{\alpha\alpha}$-Flutterderivativum des Querschnitts C einen Null durchgang bei $U_{\text{red}} \simeq 7$ (experimentell, numerisch 7,1), was entspricht einer kritischen Frequenz von $\kappa \simeq 0,45$.

Kim [55] untersuchte U-Profiles für die einzelnen Freiheitsgrade entkoppelt nach der Methode der freien Schwingungen. Er ermittelte eine kritische reduzierte Windgeschwindigkeit von $U_{\text{red}} \simeq 8$ für ein Profil mit der Schankheit $H/B=1,5$. Das im Rahmen dieser Arbeit untersuchte Profil C besitzt eine Schankheit von $H/B=1,96$. Dessen Flatterderivativum $c''_{\alpha\alpha}$ weist einen Null durchgang unterhalb von $U_{\text{red}} = 5$ auf. Allerdings muss bei Versuchen nach der Methode der freien Schwingung noch der Einfluss der systemeigenen Dämpfung berücksichtigt werden.

In Abbildung C.6 in Anhang C sind numerisch und experimentell ermittelte Flatterderivate für das Profil C anhand der kritischen Windgeschwindigkeiten verglichen, welche mit der vollständigen Lösung des Eigenwertproblems nach Abschnitt 4.5 ermittelt wurden. Die so ermittelten kritischen Windgeschwindigkeiten weichen stark von den Windgeschwindigkeiten ab, die auf Basis der theoretischen Flatterderivative nach Theodorsen ermittelt wurden. Experimentelle und numerische Ergebnisse zeigen eine sehr gute Übereinstimmung.

Profile diesen Typs besitzen generell schlechte aerolelastische Stabilitätseigenschaften und sollten nur für Brücken gewählt werden, die allein durch ihre günstigen Systemeigenschaften eine hohe Steifigkeit besitzen, z.B. Brücken kurzer Spannweite.
9.6.2 Der Querschnitt der Tacoma Brücke

Drehbewegung α hervorgerufenen Luftkräfte A_α und M_α. Gestrichelt dargestellt ist die jeweilige Bewegungsfrequenz $\omega = 1.2 ; 4.2 ; 6.0$.

In Abbildung 9.17 ist der Druckverlauf $p(t)$ in verschiedenen Punkten auf der Profiloberfläche des Profils TC während einer Rotationsbewegung für eine Schwingungsperiode gezeigt.

Das H-Profil T2 mit dem Seitenverhältnis $H:B=1:10$ wurde ebenfalls untersucht. Mit diesem Vergleich sollte die Auswirkung der Schlankheit auf H-Profile untersucht werden. In Abbildung 9.16 sind die Flatterderivate $c''_{\alpha\alpha}$ beider Profile verglichen. Die kritische reduzierte Geschwindigkeit des Profils T2, gekennzeichnet durch den Nulldurchgang des Flatterderivativums $c''_{\alpha\alpha}$, ist ca. 40% höher als die des Profils TC. Die größere Stabilität des Profils T2 folgt aus seiner größeren Schlankheit.

Abbildung 9.14: Zeitverläufe der Bewegungen und den daraus induzierten Luftkräften des Profils TC
Abbildung 9.15: Leistungsspektren des Profils TC für unterschiedliche Bewegungsfrequenzen, $\omega = 1.2 ; 4.2 ; 6.0$

Abbildung 9.16: Vergleich der Flatterderivativa c_{α}'' der Profile TC und T2
Abbildung 9.17: Zeitverlauf des Druckes in verschiedenen Punkten auf der Profiloberfläche des Querschnitts TC
9.6.3 Offene Querschnitte

Offene Brückenquerschnitte sind nach dem heutigen Erkenntnisstand die aerodynamisch günstigsten Profile. Schon die Anordnung von Schlitzen in Fahrbahnmitte bringt eine Verbesserung der aerodynamischen Eigenschaften. Wird der Schlitz vergrößert, kann die kritische Windgeschwindigkeit mehr als verdoppelt werden.

Die schlechten numerischen Ergebnisse sind wahrscheinlich vor allem darauf zurückzuführen, dass der stromabgewandte Profilabschnitt in der turbulenten Nachlaufzone liegt, die aufgrund der statistischen Turbulenzmodellierung nicht genau genug abgebildet wird. Die Nachweismethode A ist grundsätzlich für offene Querschnitte nicht geeignet.
9.7 Zur aerodynamischen Dämpfung

Das dimensionsbehaftete Flatterderivativum $c_{\alpha}'' \cdot h$ verbleibt bei allen untersuchten Profilen negativ. Also trägt es immer zur Dämpfung der Vertikalschwingungen des Gesamtsystems bei. Bei Profilen mit einer Schlankheit von ca. $H:B = 1$ kann es zu einem Vorzeichenwechsel kommen [46]. Bei stumpfen Profilen wechselt das Flatterderivativum M_α das Vorzeichen. Ist es positiv, ist die Gesamtdämpfung kleiner als die Strukturdämpfung. Ist es negativ, ist die aeroelastische Dämpfung größer als die Strukturdämpfung. Die theoretischen Luftkräfte $c_{\alpha}'' \cdot h$ und $c_{\alpha} \cdot n$ nach Theodorsen wechseln ihr Vorzeichen nicht und verbleiben negativ für alle k. Deshalb werden die entkoppelten Schwingungen plattenähnlicher Querschnitte immer aerodynamisch gedämpft.

Ist A_h' oder M_α' positiv, wirkt die Anströmung wie eine Verringerung der Masse der Brücke in Querrichtung, beziehungsweise des Massenträgheitsmoments. Ist die Masse kleiner, ist die resultierende Eigenfrequenz höher. Je höher die kritische Eigenfrequenz k, desto höher sind auch die Beträge von A_h' oder M_α'. In Abbildung 9.18 sind die durch eine Vertikalbewegung gestörten Bereiche markiert. Je größer k ist, desto kleiner sind auch die gestörten Luftmassen.

Abbildung 9.18: Störungszenen für unterschiedliche reduzierte Frequenzen k
9.8 Simulation abklingender Schwingungen

In dieser Arbeit wurden hauptsächlich harmonische Schwingungen konstanter Amplitude untersucht. Im Folgenden werden die bewegungsinduzierten Kräfte infolge abklingender und angefachter Schwingung untersucht. Hierfür wurden abklingende Bewegungen über entsprechende Geschwindigkeitsrandbedingungen vorgegeben.

Unter der Annahme, dass die abklingende Bewegung
\[x_D = \dot{x} e^{-\xi x \omega t} \sin(\omega_D t) \] (9.1)
die Schwingungsantworten
\[A(t) = \dot{A} e^{-\xi A \omega t} \sin(\omega_D t) \] (9.2)
und
\[M(t) = \dot{M} e^{-\xi M \omega t} \sin(\omega_D t) \] (9.3)
erzeugt, werden die numerisch ermittelten Luftkraftverläufe ausgewertet, indem mit Hilfe der Methode der kleinsten Fehlerquadrate die Parameter \(\xi_A \) und \(\xi_M \) bestimmt werden. Für kleine Abklingbeiwerte ist die Differenz zwischen dem Abklingmaß \(\xi \) des vorgegebenen Signals und den Abklingmaßen der Schwingungsantwort \(\xi_A \) und \(\xi_M \) klein. Zunächst sind die Abklingbeiwerte der Schwingungsantwort sogar kleiner als die der vorgegebenen Bewegung. Wie in Abbildung 9.19 gezeigt, werden sie mit steigendem Abklingmaß der vorgegebenen Bewegung aber im Verhältnis dazu größer.

Im Rahmen dieser Arbeit werden die abklingenden Schwingungen nicht weiter untersucht.

9.9 Zeitbereichssimulation auf Basis numerischer Flatterderivativa

Auf Basis der numerisch ermittelten Flatterderivativa wurden für alle Profile die vier Zirkulationsfunktionen \(C_{l\alpha} \), \(C_{h\alpha} \), \(C_{\alpha h} \) und \(C_{\alpha\alpha} \) ermittelt. Die Fouriertransformierten dieser Funktion und die Steigungsfaktoren der statischen Beiwerte in Abhängigkeit vom statischen Anstellwinkel \(\alpha_s \), die ebenfalls numerisch ermittelt wurden, bilden die Grundlage zur Zeitbereichssimulation. Diese wird mit dem Prediktor-Korrektorverfahren wie in Anhang D beschrieben durchgeführt.

Auf Basis des Datensatzes 2 (Anhang F) sind die bewegungsinduzierten Schwingungen im Zeitbereich für die Profile TC (Abbildung 9.20), R (Abbildung 9.21) und GB (Abbildung 9.22) simuliert. Es wird eine Anfangsauslenkung von \(h = 0.016 \) als Störung aufgebracht. Es werden jeweils Schwingungen im unterkritischen, kritischen und überkritischen Strömungszustand berechnet.
Die Geschwindigkeit, in der die Amplituden konstant sind, beträgt im Falle des Profils TC ca. 22,5 m/s. Nach Nachweismethode C berechnet sich die kritische Wind-
geschwindigkeit zu 20.0 m/s. Somit weicht die kritische Windgeschwindigkeit in der Zeitbereichssimulation um 12.5 % ab. Eine Abweichung von ca. 10 % ergibt sich auch für das Profil R. Verglichen mit der Zeitbereichssimulation, welche unter Verwendung der Jones-Approximation durchgeführt wurden, bei der für den verwendeten Datensatz erst bei einer Geschwindigkeit von 43 m/s der Grenzzustand erreicht wird (vergleiche Abbildung 5.2), wird das Schwingungsverhalten dieser beiden stumpfen Profile sehr gut wiedergegeben.

Das Profil GB zeigt bei einer Geschwindigkeit von 42 m/s konstante Amplituden. Mit der Nachweismethode C wird eine kritische Windgeschwindigkeit von 40.2 m/s errechnet. Somit ist die Abweichung kleiner als 5 %.

Somit erhält man aus den numerisch ermittelten Kraftbeiwerten auch eine zufrieden stellende Grundlage für Zeitbereichssimulationen.

Abbildung 9.20: Zeitbereichssimulation der Schwingung des Profils TC im unterkritischen ($u_\infty=20$ m/s), kritischen ($u_\infty=22.5$ m/s) und überkritischen ($u_\infty=25$ m/s) Strömungszustand
Abbildung 9.21: Zeitbereichssimulation der Schwingung des Profiles R im unterkritischen ($u_\infty = 20$ m/s), kritischen ($u_\infty = 24$ m/s) und überkritischen ($u_\infty = 28$ m/s) Strömungszustand

Abbildung 9.22: Zeitbereichssimulation der Schwingung des Profiles GB im unterkritischen ($u_\infty = 38$ m/s), kritischen ($u_\infty = 41$ m/s) und überkritischen ($u_\infty = 45$ m/s) Strömungszustand
9.10 Bewegungsinduzierte Kräfte in Strömungsrichtung

Xiang und Ge ermitteln alle 18 Flatterderivate für einen trapezförmlichen Vollquerschnitt [124], ohne aber den Einfluss des dritten Freiheitsgrades auf die Berechnung der kritischen Windgeschwindigkeit weiter zu untersuchen. Im Rahmen dieser Arbeit wird auf eine tiefergehende Untersuchung der bewegungsinduzierten Widerstandskraft verzichtet, da keine Versuchsergebnisse vorliegen, die diese Untersuchung unterstützen könnten.

![Abbildung 9.23: Zeitverlauf von bewegungsinduzierter Widerstandskraft und Luftkraftmoment infolge Rotationsbewegung](image-url)
Abbildung 9.24: Fouriertransformierte aller drei bewegungsinduzierten Luftkraftkomponenten infolge Rotationsbewegung

Abbildung 9.25: Grafische Erklärung der Frequenz 2ω der instationären Widerstandskraft ($A_x = Anströmfläche in x-Richtung$)
9.11 Der Einfluß des effektiven Anstellwinkels

Abbildung 9.26: Effektiver Anstellwinkel

Profile, die keine Doppelsymmetrie aufweisen, besitzen bei ebener Anströmung einen stationären Momentenbeiwert ungleich null. Die Asymmetrie muss aber schon sehr ausgeprägt sein, um einen stationären Momentenbeiwert in signifikanter Größe zu erzeugen. Die meisten hier untersuchten Querschnitte besitzen nur eine schwache Asymmetrie. Lediglich die Profile B8 und C besitzen aufgrund ihrer ausgeprägteren Asymmetrie bezogen auf die horizontale Profilachse einen deutlich höheren Momentenbeiwert, wie in Tabelle 9.9 dokumentiert ist. Der trapezähnliche Vollquerschnitt der Brücke über den großen Belt besitzt einen deutlich geringeren stationären Momentenbeiwert. Als effektiver Anstellwinkel \(\alpha_e \) (Abbildung 9.26) wird im folgenden der Winkel bezeichnet, der sich durch die Schiefstellung des Profils ergibt.

Der effektive Anstellwinkel hängt weiterhin von der Systemsteifigkeit ab. Torsionsweiche Systeme können trotz eines Querschnittes mit kleinem stationären Momentenbeiwert einen ausgeprägten effektiven Anstellwinkel besitzen.

Für die in Stuttgart untersuchten Profile wurden die folgenden Momentenbeiwerte und deren Steigungsfaktoren ermittelt. Die effektiven Anstellwinkel werden durch eine \(n \)-fache inkrementelle Laststeigerung ermittelt.

\[
M_{T0} = \frac{1}{12} \rho u^2 B^2
\]

\[
a_0 = \frac{M_T}{K_\alpha} \quad \text{berechnet von } 0 \text{ bis } n \quad (\text{Abbruch, wenn } \Delta M_T(\alpha_i) \geq 0)
\]

\[
\Delta M_T(\alpha_i) = \alpha_i \frac{dM_T}{d\alpha} \frac{1}{2} \rho u^2 B^2
\]

\[
\alpha_{i+1} = \frac{\Delta M_T(\alpha_i)}{K_\alpha}
\]

\[
\alpha_e = \sum_{i=1}^{n} \alpha_i
\]

Nur im Falle des Profils B8 hat der Anstellwinkel signifikanten Einfluss auf die aeroelastische Stabilität des Profils, wie am Luftkraftbeiwert $c''_{\alpha\alpha}$ in Abbildung 9.27 zu erkennen ist. Bei ansteigendem effektiven Anstellwinkel neigt das Profil zunehmend zum Torsionsflattern, was durch den Nulldurchgang des Luftkraftbeiwertes $c''_{\alpha\alpha}$ für größere Anstellwinkel zu erkennen ist. Da die Versuche von Scanlan, welche wie in Kapitel 9.3 beschrieben für das Profil eine Neigung zum Torsionsflattern ermitteln, mit der Methode der freien Schwingungen durchgeführt wurden, wäre dies eine Erklärung für die Abweichung zu den numerischen und experimentellen Ergebnissen dieser Arbeit. Die Flatterderivativa der beiden anderen untersuchten Profile zeigen keine signifikanten Änderungen der Flatterderivativa bei einer Änderung des Anstellwinkels, wie in den Abbildungen 9.28 und 9.29 zu sehen ist.

Xiang und Ge [124] ermitteln für die Jiangyin-Brücke mit einer Spannweite von 1385 m einen maximalen effektiven Anstellwinkel von ca. 1° bei einer kritischen Geschwindigkeit von 66,8 m/s. Bei dermaßen hohen Geschwindigkeiten wird die Windanströmung grundsätzlich durch Böen im atmosphärischen Wind durch nahe Oberflächenränder (z.B. Seegang oder Bebauung) so schwankend, dass mit einem Auftreten von Flatterschwingungen nicht mehr gerechnet werden muss. Da die Windkräfte im grenzstabilen Fall viel geringer sind, ist auch der effektive Anstellwinkel in diesem Fall viel geringer. Zhang [126] ermittelt für eine Hängebrücke von 1490 m

<table>
<thead>
<tr>
<th>Profil</th>
<th>c_M</th>
<th>$dc_M/d\alpha$</th>
<th>α_e [Grad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0,004</td>
<td>0,7964</td>
<td>0,05</td>
</tr>
<tr>
<td>M</td>
<td>0,036</td>
<td>1,5928</td>
<td>0,56</td>
</tr>
<tr>
<td>tM</td>
<td>0,034</td>
<td>1,5616</td>
<td>0,48</td>
</tr>
<tr>
<td>S</td>
<td>0,026</td>
<td>1,335</td>
<td>0,39</td>
</tr>
<tr>
<td>G</td>
<td>0,014</td>
<td>0,6474</td>
<td>0,1825</td>
</tr>
<tr>
<td>TC</td>
<td>-0,009</td>
<td>-9,1673</td>
<td>-0,09</td>
</tr>
<tr>
<td>C</td>
<td>0,086</td>
<td>0,5787</td>
<td>1,1043</td>
</tr>
<tr>
<td>P</td>
<td>0,002</td>
<td>1,7418</td>
<td>0,03</td>
</tr>
<tr>
<td>B8</td>
<td>0,083</td>
<td>1,2319</td>
<td>1,22</td>
</tr>
</tbody>
</table>

Tabelle 9.9: Effektive Anstellwinkel (numerisch ermittelt) unter Zugrundelegung der Systemwerte des Datensatzes 1 und einer Windgeschwindigkeit von 22 m/s
Spannweite einen effektiven Anstellwinkel von $\alpha_e = 0.4^\circ$ in der Mitte des Hauptfeldes. Im Rahmen dieser Arbeit werden deshalb nur Anstellwinkel bis $\alpha_e = 1^\circ$ untersucht.

Abbildung 9.27: Einfluss des Anstellwinkels auf die Flatterderivativa des Profils B8
Abbildung 9.28: Einfluss des Anstellwinkels auf die Flatterderivative des Profils GB
Abbildung 9.29: Einfluss des Anstellwinkels auf die Flatterderivativa des Profils C
Kapitel 10

Wirbelinduzierte Schwingungen

10.1 Stand der Forschung

Schewe [90], [88] bestimmt die Strouhalzahl eines Quadratprofils unter unterschiedlichen Anstellwinkeln des Profils gegenüber der Strömungsrichtung experimentell. Im Variationsbereich des Anstellwinkels \(0^\circ \leq \alpha_s \leq 45^\circ \) schwankt die Strouhalzahl zwischen \(St = 0.12 \) und \(St = 0.15 \). Mit zunehmender Strouhalzahl verringert sich gleichzeitig die Widerstandskraft \(D \). Diesen Zusammenhang hat er auch bei der Untersuchung eines Trapezquerschnittes festgestellt, siehe hierfür Kapitel 11. Der stationäre Auftriebsbeiwert nimmt dagegen mit steigender Strouhalzahl zu. Im betrachteten Reynoldszahlbereich \(650.000 \leq Re \leq 2.700.000 \) beobachtet er keinen Einfluss der Reynoldszahl auf die untersuchten stationären Luftkraftbeiwerte. Da aber Quadratprofile bei Brückenauflagträgern nicht vorkommen, wird dieses Profil im Rahmen dieser Arbeit nicht weiter untersucht.

Schewe untersucht in einer weiteren Arbeit [89] nichtlineare Resonanzeffekte bei der Umströmung des Tacoma Profils. Er bestimmt eine Strouhalzahl von \(St = 0.11 \) für
ein Reynoldszahl \(Re = 1.250.000 \), welche mit der in den Wasserkanalversuchen und in den numerischen Untersuchungen im Rahmen dieser Arbeit ermittelten Strouhalzahl und den von LARSEN und WALther [63] numerisch berechneten Werten übereinstimmt.

Nach FORSCHING [40] läßt sich die instationäre wirbelinduzierte Auftriebskraft in der folgenden nichtlinearen komplexen Formulierung darstellen

\[
A(t) = \rho u^2 \frac{H}{2} c_{AW}(St, Re, h/H) e^{i\omega t}
\]
mit dem wirbelinduzierten komplexen Auftriebsbeiwert

\[
c_{AW} = c'_{AW} + i c''_{AW}
\]

Die Strouhalzahl \(St \) läßt sich aus der reduzierten Frequenz \(k \) wie folgt berechnen:

\[
St = \frac{2\pi H}{b k}
\]

Ist der Imaginärteil \(c''_{AW} \) positiv, wirkt die Auftriebskraft schwingungsanregend, ist sie negativ, ist das System aerodynamisch gedämpft. Der Realteil ist entweder in Phase oder Gegenphase mit der Schwingungsbewegung und hat nur einen geringen Anteil an der Schwingungsbewegung [40].

Im Resonanzfall ist die Wirbelablösefrequenz \(\omega_s \) gleich der Eigenfrequenz \(\omega_h \) der Struktur

\[
\omega_s = \omega_h
\]
mit \(\omega_s = 2\pi u_c / H \) (siehe SCHMID [94]).

Der Effekt der Wirbelresonanz ist dem Strukturverhalten hervorgerufen durch eine Fremderregung durch eine harmonische Kraft ähnlich. Ist die Frequenz in der Nähe der Wirbelfrequenz, kann es zu Schwingungen konstanter Amplitude kommen. Dies ist in Abbildung 10.1 am Beispiel des Profils TC gut zu erkennen. In dieser Abbildung ist der Frequenzbereich um die Wirbelablösefrequenz, ausgedrückt durch die Strouhalzahl \(St \) aufgetragen. Den Frequenzbereich, in dem Schwingungen durch Wirbelregung entstehen, bezeichnet man als Resonanzbereich. Aber anders als bei der Frequenzregung durch eine harmonische Kraft kann der Resonanzbereich der Wirbschwingungen durch einen Synchronisationseffekt verbreitert werden, durch das so genannte "lock-in". Dieser Effekt wird aber im Rahmen dieser Arbeit nicht weiter untersucht.

Die Amplitude der wirbelregten Schwingungen ist begrenzt. Oberhalb der maximalen Amplitude wird der Imaginärteil \(c''_{AW} \) der Auftriebskraft immer kleiner und schließlich negativ, wie in Abbildung 10.1 zu sehen ist. Die durch die Vertikalbewegung entstehende Auftriebskraft wirkt bei großer Amplitude dämpfend auf die
Abbildung 10.1: Betrag der instationären Auftriebskraft c_{hh} in Abhängigkeit von der reduzierten Frequenz für das Profil TC (Experimentelle Ergebnisse, Re=100.000)

Wird das System, beispielsweise durch eine Böe, über die maximale Amplitude ausgelenkt, nimmt die Schwingung ab, bis die maximale Amplitude erreicht ist. Dieser Effekt wird im Rahmen dieser Arbeit aber nicht weiter untersucht.

Abbildung 10.2: $c''_{hh} \cdot \dot{h}$ positiv

Übereinstimmung mit den experimentellen Ergebnissen liefert.

10.2 Zur Wechselwirkung von Bewegungsfrequenz und Wirbelresonanzfrequenz

Üblicherweise werden wirbelerregte Resonanzschwingungen am ruhenden Profil untersucht. Eine Bestimmung der Wirbelresonanzfrequenz ist aber ebenfalls mit der Methode der erzwungenen Schwingungen möglich, wie auch Dowell [31] berichtet. Dies mag im Experiment keine Vorteile bieten, da der Versuchsaufbau schwieriger ist. In der numerischen Simulation dagegen zeigt es sich, dass sich Frequenzen, bei denen eine Wirbelresonanz auftreten kann, wesentlich verlässlicher mit der Methode der erzwungenen Schwingungen bestimmen lassen als am unbewegten Profil. Mit der Methode der erzwungenen Schwingungen wird für die Untersuchung der Wirbelresonanz die Eigenfrequenz der Struktur über einen größeren Frequenzbereich variiert und der Verlauf Strömungskräfte, die auf das Profil wirken, über diesen Frequenzbereich ausgewertet. Wegen der geringeren Windgeschwindigkeiten, bei denen Wirbelresonanzen üblicherweise auftreten, ist die reduzierte Frequenz \tilde{k} größer als die reduzierte...

![Diagram](image-url)
Frequenz k, bei der üblicherweise Flattern auftritt.

Im Folgenden soll der Zusammenhang zwischen der Wirbelresonanzenfrequenz und der Bewegungsfrequenz der harmonischen erzwungenen Bewegung und dessen Einfluss auf die Auftriebskraft A näher untersucht werden.

Die Beziehung zwischen der reduzierten Frequenz k und der Strouhalzahl lautet im Resonanzbereich (wenn $\omega = \omega_S$)

$$k = \frac{B}{f} St \pi$$ \hspace{1cm} (10.5)

Im Resonanzbereich kommt es zu einem lokalen Maximum der Luftkraft c_{hh}, wie im folgenden Abschnitt noch vertieft diskutiert werden wird.

Das zu Resonanzschwingungen neigende Profil TC zeigt im Frequenzbereich $1,0 < k < 2,0$ ein lokales Maximum des Flatterderivativums c_{hh}', siehe Abbildung 10.4. Die von zahlreichen Autoren angegebene Strouhalzahl des Profils $St = 0,11$ wird bei unbewegtem Profil (stationärer Fall) in Experiment (siehe [7]) und numerischer Simulation bestätigt. Nimmt die Bewegungsamplitude zu, wird der c_{hh}''-Wert kleiner und sogar negativ.

In Abbildung 10.4 wird der Zusammenhang zwischen bewegungsinduzierten Kräften und der Wirbelresonanz deutlich. Bei einer bestimmten Geschwindigkeit entstehen mit der vorgegebenen Bewegungsfrequenz harmonische Auftriebskräfte, welche die Brücke zu resonanten Schwingungen anregen würden, wenn sie frei schwingen könnte.

In den experimentellen Untersuchungen zeigte außer dem Querschnitt TC nur noch der Querschnitt C eine leichte Erhöhung der c_{hh}-Werte im Bereich möglicher Wirbelfrequenzen, ohne aber einen positiven c_{hh}''-Bereich zu besitzen. In der Berechnung der stationären Luftkraftbeiwerte konnte keine Strouhalzahl identifiziert werden.

Am Beispiel des Rechtecks R4 wird der Zusammenhang von Bewegungsfrequenz und Wirbelresonanzenfrequenz mit Hilfe der numerischen Stromungsmechanik näher untersucht. Hierfür werden die Auftriebsbeiwerte c_{hh}' und c_{hh}'' für das Profil R4 während einer vertikalen harmonischen Bewegung kleiner Amplitude ermittelt. Diesmal wird die Auftriebskraft mittels Fourieranalyse ausgewertet. In Tabelle 10.1 sind die mit einer Fourieranalyse ermittelten Eigenfrequenzen ω_A der Auftriebskraft A im k-Bereich $0,2 \leq k \leq 1,0$ angegeben. In diesem Bereich zeigt sich zunächst bei niedriger Frequenz zusätzlicher zu einer Frequenz nahe der Bewegungsfrequenz auch eine Wirbelfre-
Wirbelinduzierte Schwingungen

Abbildung 10.4: Betrag der instationären Auftriebskraft c_{hh} in Abhängigkeit von der reduzierten Geschwindigkeit U_{red} für das Profil TC

Die Kraftantwort wird auch von Dowell [31] für Experimente mit erzwungenen Schwingungen beschrieben. Die Kraftantwort ausgedrückt durch das Leistungsspektrum P_S in dieser Frequenz ist zunächst größer als die Kraftantwort dargestellt durch das Leistungsspektrum P_A nahe der Bewegungsfrequenz. Das Verhältnis der Kräfte ist mit dem Faktor P_S/P_A angegeben. In den Leistungsspektren ist nicht nur die Größe der Kraft enthalten, sondern auch die Anzahl der Amplituden. Mit ansteigender Frequenz nimmt die Dominanz der Wirbelfrequenz, hier ausgedrückt im Verhältnis zur gegenüber der Bewegungsfrequenz immer weiter ab. Schließlich verschwindet der Kraftanteil in der Wirbelfrequenz völlig. Die Frequenz der bewegungsinduzierten Luftkraft wird ab einem k-Wert von 0,6 komplex, $\omega_k = (\xi_k + i)\omega$. Zunächst wird das Dämpfungsmaß ξ_k immer größer. Die vorher vorhandene Kraftantwort in der Frequenz ω_S ist nicht mehr vorhanden. Aus den Frequenzen der wirbelsynchronen Luftkraftanteile errechnet sich eine Strouhalzahl von $St = 0,127 \div 0,132$. Rechnet man dies mit Gleichung

\[A(t) = A_h \sin(\omega_A t + \theta) + A_S \sin(\omega_S t) \]

(10.6)
Abbildung 10.5: \(c_{h_{hh}}^{\prime\prime} \) des Profils TC in Abhängigkeit von der Amplitude (\(Re = 100000 \)) und in Abhängigkeit von der Reynoldszahl (\(h = 2 \, mm \)), experimentell ermittelt.

10.5 in eine äquivalente reduzierte Frequenz \(k \) um, ist im Bereich \(1.6 < k < 1.7 \) mit einer Wirbelresonanz zu rechnen. In der folgenden Tabelle sind die Frequenzen der Luftkraft gegenüber den Frequenzen der jeweiligen erzwungenen Schwingung aufgetragen. Oberhalb von \(k = 1.0 \) wird die Dämpfung negativ, es kommt also zu einer Anfachung der Luftkraft. Ist die Frequenz niedriger als die Wirbelresonanzfrequenz, ist die Anfachung stärker. Nach Erreichen der Wirbelresonanzfrequenz nimmt die Anfachung plötzlich ab. Die Antwortfrequenz der Luftkraft wird zunehmend reell. Ähnliches zeigt sich auch für das Profil TC, wie in Abbildung 9.15 zu sehen ist. Bei diesen Querschnitten kommt es also zu einer leichten Beeinflussung der bewegungsinduzierten Kräfte durch die Wirbelresonanz.

Bei gebräuchlichen Brückenquerschnitten beeinflusst die Wirbelresonanz die bewegungsinduzierten Luftkräfte kaum. Bei dem aerodynamisch ungünstigen Querschnitt TC liegt der \(k \)-Wert des aeroelastischen Stabilitätsversagens unter Ansatz der bekannten Strukturreigenschaften der Brücke bei \(k < 1.0 \), während der \(k \)-Wert der Wirbelresonanz bei \(k = 1.7 \) liegt. Für den Querschnitt GB liegt der \(k \)-Wert der Wirbelresonanz bei \(k = 4.7 \) bei Zugrundelegung einer Strouhalzahl von 0,22, welcher weit außerhalb des \(k \)-Bereiches liegt, im dem Flatterinstabilitäten auftreten können. Dies liegt vor allem am Schlankheitsgrad \(H:B \). Übliche Brückenquerschnitte sind sehr schlank, mindestens \(H:B=1.5 \) oder schlanker, so dass der \(k \)-Wert der Wirbelresonanz sehr groß wird, siehe Gleichung 10.5.
Wirbelinduzierte Schwingungen

<table>
<thead>
<tr>
<th>k</th>
<th>ω</th>
<th>ω_A</th>
<th>ξ_A</th>
<th>ω_S</th>
<th>P_S/P_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>1,2</td>
<td>1,2</td>
<td>0</td>
<td>9,85</td>
<td>5,63</td>
</tr>
<tr>
<td>0,3</td>
<td>1,8</td>
<td>1,8</td>
<td>0</td>
<td>9,95</td>
<td>3,06</td>
</tr>
<tr>
<td>0,4</td>
<td>2,4</td>
<td>2,4</td>
<td>0</td>
<td>9,95</td>
<td>1,84</td>
</tr>
<tr>
<td>0,5</td>
<td>3,0</td>
<td>3,0</td>
<td>0</td>
<td>9,8</td>
<td>0,8</td>
</tr>
<tr>
<td>0,6</td>
<td>3,6</td>
<td>3,54</td>
<td>0,017</td>
<td>9,95</td>
<td>0,32</td>
</tr>
<tr>
<td>0,7</td>
<td>4,2</td>
<td>4,14</td>
<td>0,014</td>
<td>9,6</td>
<td>0,18</td>
</tr>
<tr>
<td>0,8</td>
<td>4,8</td>
<td>4,66</td>
<td>0,029</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0,9</td>
<td>5,4</td>
<td>5,2</td>
<td>0,037</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,0</td>
<td>6,0</td>
<td>5,8</td>
<td>0,033</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 10.1: Frequenzen der bewegungsinduzierten Luftkraft des Profils R4 in Abhängigkeit von der reduzierten Frequenz k im Frequenzbereich des Torsionsflatterns

<table>
<thead>
<tr>
<th>k</th>
<th>ω</th>
<th>ω_A</th>
<th>ξ_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>3,6</td>
<td>3,68</td>
<td>-0,022</td>
</tr>
<tr>
<td>1,3</td>
<td>3,9</td>
<td>4,0</td>
<td>-0,026</td>
</tr>
<tr>
<td>1,4</td>
<td>4,2</td>
<td>4,28</td>
<td>-0,019</td>
</tr>
<tr>
<td>1,5</td>
<td>4,5</td>
<td>4,59</td>
<td>-0,02</td>
</tr>
<tr>
<td>1,6</td>
<td>4,8</td>
<td>4,9</td>
<td>-0,021</td>
</tr>
<tr>
<td>1,7</td>
<td>5,1</td>
<td>5,13</td>
<td>-0,006</td>
</tr>
<tr>
<td>1,8</td>
<td>5,4</td>
<td>5,43</td>
<td>-0,006</td>
</tr>
<tr>
<td>1,9</td>
<td>5,7</td>
<td>5,76</td>
<td>-0,01</td>
</tr>
<tr>
<td>2,0</td>
<td>6,0</td>
<td>6,09</td>
<td>-0,015</td>
</tr>
</tbody>
</table>

Tabelle 10.2: Frequenzen der bewegungsinduzierten Luftkraft des Profils R4 in Abhängigkeit von der reduzierten Frequenz k im Frequenzbereich der Wirbelresonanz
Kapitel 11

Numerische Berechnung der stationären Luftkraftbeiwerte

Die eigenen numerisch und experimentell ermittelten stationären Luftkraftbeiwerte werden im Folgenden miteinander verglichen. Zusätzlich werden auch noch von anderen Autoren ermittelte Vergleichswerte herangezogen. In Tabelle 11.1 sind numerische und experimentelle Ergebnisse einander gegenübergestellt. In Anhang A sind diese für alle numerisch untersuchten Profile auch grafisch in Abhängigkeit vom Anstellwinkel im Bereich $-10^\circ \leq \alpha_s \leq 10^\circ$ dargestellt ($Re = 100.000$). Soweit vorhanden, wurden die experimentellen Ergebnisse in den Abbildungen hinzugefügt.

Die numerisch ermittelten stationären Luftkraftbeiwerte weichen zumeist stark von den experimentell ermittelten ab. Für manche Profile, wie das Profil M, ist die Übereinstimmung dagegen recht gut. Für die beiden Rechteckprofile und das Profil TC sind Auftrieb und Luftkraftmoment wegen doppelter Symmetrie wie erwartet gleich (numerisch) oder annähernd gleich null (experimentell). Für die Zeitbereichsrechnung mit Hilfe der Übergangsfunktionen müssen die Steigungen der stationären Luftkraftbeiwerte dc_A/da und dc_M/da bekannt sein. In Tabelle 11.1 sind diese für die numerisch und die experimentell ermittelten Flatterderivata angegeben. Der Faktor f_A gibt das Verhältnis zur theoretischen Steigung des Auftriebsbeiwertes 2π an. Dementsprechend gibt der Faktor f_M das Verhältnis zur theoretischen Steigung des Momentenbeiwertes $\pi/2$ in Prozent an.

Ricciardelli [78] ermittelt einen stationären auf die Höhe H bezogenen aerodynamischen Momentenbeiwert von $c_M = 0,18$ für einen trapezförmigen Vollquerschnitt mit Leitblechen. Dieser stimmt mit dem im Rahmen dieser Arbeit experimentell ermittelten Momentenbeiwert des Profils S, welcher auf die Höhe bezogen einen Wert
Tabelle 11.1: Gegenüberstellung von numerisch und experimentell ermittelten stationären Luftkraftbeiwerten ($Re=100.000$, $\alpha_s=0^\circ$)

<table>
<thead>
<tr>
<th>Profil</th>
<th>Methode</th>
<th>c_A</th>
<th>c_M</th>
<th>c_D</th>
<th>$dc_A/d\alpha$</th>
<th>f_A</th>
<th>$dc_M/d\alpha$</th>
<th>f_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>num.</td>
<td>0.000</td>
<td>0.029</td>
<td>0.033</td>
<td>5.04</td>
<td>80.2</td>
<td>1.43</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>-0.050</td>
<td>0.034</td>
<td>0.065</td>
<td>4.95</td>
<td>79.0</td>
<td>1.23</td>
<td>78.0</td>
</tr>
<tr>
<td>S</td>
<td>num.</td>
<td>-0.050</td>
<td>-0.006</td>
<td>0.027</td>
<td>6.59</td>
<td>105.0</td>
<td>2.72</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>-0.011</td>
<td>0.021</td>
<td>0.049</td>
<td>4.06</td>
<td>64.7</td>
<td>1.26</td>
<td>80.3</td>
</tr>
<tr>
<td>BS</td>
<td>num.</td>
<td>0.091</td>
<td>0.074</td>
<td>0.068</td>
<td>9.02</td>
<td>144</td>
<td>1.43</td>
<td>91.2</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>0.012</td>
<td>0.084</td>
<td>0.049</td>
<td>6.92</td>
<td>110</td>
<td>1.26</td>
<td>79.9</td>
</tr>
<tr>
<td>M</td>
<td>num.</td>
<td>-0.390</td>
<td>0.023</td>
<td>0.040</td>
<td>9.96</td>
<td>0.63</td>
<td>1.2</td>
<td>76.4</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>-0.345</td>
<td>0.036</td>
<td>0.047</td>
<td>5.77</td>
<td>91.8</td>
<td>1.56</td>
<td>99.2</td>
</tr>
<tr>
<td>P</td>
<td>num.</td>
<td>0.000</td>
<td>0.000</td>
<td>0.040</td>
<td>8.67</td>
<td>138</td>
<td>2.04</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>-0.005</td>
<td>0.002</td>
<td>0.101</td>
<td>7.24</td>
<td>115</td>
<td>1.70</td>
<td>108</td>
</tr>
<tr>
<td>R</td>
<td>num.</td>
<td>0.002</td>
<td>0.000</td>
<td>0.121</td>
<td>12.84</td>
<td>204</td>
<td>0.35</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>0.023</td>
<td>0.003</td>
<td>0.114</td>
<td>10.69</td>
<td>171</td>
<td>0.65</td>
<td>40.5</td>
</tr>
<tr>
<td>C</td>
<td>num.</td>
<td>-0.065</td>
<td>0.095</td>
<td>0.109</td>
<td>5.79</td>
<td>60.5</td>
<td>0.98</td>
<td>5.10</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>-0.172</td>
<td>0.087</td>
<td>0.105</td>
<td>4.31</td>
<td>68.6</td>
<td>0.21</td>
<td>13.5</td>
</tr>
<tr>
<td>TC</td>
<td>num.</td>
<td>0.013</td>
<td>0.001</td>
<td>0.202</td>
<td>6.79</td>
<td>88.6</td>
<td>-0.36</td>
<td>-22.6</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>0.002</td>
<td>-0.005</td>
<td>0.261</td>
<td>5.57</td>
<td>108.2</td>
<td>-0.83</td>
<td>-52.8</td>
</tr>
<tr>
<td>G</td>
<td>num.</td>
<td>0.000</td>
<td>0.000</td>
<td>0.040</td>
<td>1.61</td>
<td>25.0</td>
<td>0.76</td>
<td>48.5</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td>0.026</td>
<td>0.012</td>
<td>0.025</td>
<td>3.19</td>
<td>50.7</td>
<td>0.54</td>
<td>34.7</td>
</tr>
</tbody>
</table>

von $c_M = 0.2$ hat, recht gut überein. Der im Rahmen dieser Arbeit numerisch ermittelte Wert weicht stark von diesen beiden Werten ab.

SCHEWE und LARSEN [92] ermitteln Strouhalzahl und Widerstandsbeiwert experimentell für einen Trapezquerschnitt mit einer Schlankheit von $H:B = 1:3.7$ mittels Windkanalversuchen in Abhängigkeit von der Reynoldszahl. Die Reynoldszahl wird variiert in einem Bereich von $Re = 300.000$ bis $Re = 1.474.280$. Die Strouhalzahl erhöht sich von $St = 0.18$ im unteren Reynoldszahlbereich bis $St = 0.22$ im höheren. Der Widerstandsbeiwert verringert sich kontinuierlich von $c_D = 0.185$ bis auf $c_D = 0.163$. Diese Tendenz zeigt sich nicht in den Wasserkanaluntersuchungen, welche im Rahmen dieser Arbeit durchgeführt wurden. Hier erhöht sich der Widerstandsbeiwert c_D von 0.049 auf 0.053. Der Reynoldszahlbereich liegt aber unter dem von SCHEWE untersuchten Bereich.

Das in Rahmen dieser Arbeit untersuchte Trapezprofil B8 besitzt eine Schlankheit von $H:B = 1:6.8$, was die geringeren Widerstandsbeiwerte erklärt. Die Abnahme des Widerstandsbeiwertes mit begleitender Zunahme der Strouhalzahl deuten auf Ablösungs- und Wiederanlegepunkte hin, die von der Reynoldszahl abhängen [92]. Die allgemeine Aussage, dass scharfkantige Profile weniger Reynoldszahlabhängiges Strömungsverhalten aufweisen, sollte weitergehend experimentell und numerisch untersucht werden. Im Rahmen dieser Arbeit wird dieser Aspekt nicht weiter vertieft, da mit dem vorhandenen Turbulenzmodell eine Untersuchung von turbulenzbeding-

Stationäre Luftkraftbeiwerte

<table>
<thead>
<tr>
<th>Methode</th>
<th>c_{D0}</th>
<th>c_{M0}</th>
<th>$dc_{D0}/d\alpha$</th>
<th>$dc_{M0}/d\alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet (ohne Turbulenz)</td>
<td>0.027</td>
<td>0.075</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DVM [58]</td>
<td>0.061</td>
<td>0.00</td>
<td>4.13</td>
<td>1.15</td>
</tr>
<tr>
<td>Experiment [58]</td>
<td>0.081</td>
<td>0.067</td>
<td>0.028</td>
<td>4.37</td>
</tr>
</tbody>
</table>

Tabelle 11.3: Stationäre Luftkraftbeiwerte des Profils GB nach Larsen [58] ($dc_{D0}/d\alpha$ und $dc_{M0}/d\alpha$ mit Comet ohne Turbulenzmodellierung nicht ermittelt)

Die Übereinstimmung zwischen numerischen und experimentellen Ergebnissen bei den stationären Luftkraftbeiwerten ist wesentlich schlechter als bei den bewegungsinduzierten Luftkräften. Insgesamt zeigt es sich, dass mit dem gewählten Simulationsmodell keine verlässlichen Aussagen über die stationären Luftkraftbeiwerte gemacht werden können. Dies liegt an der mangelnden Modellierung der Turbulenzeffekte durch das gewählte Turbulenzmodell. Für die Ermittlung der stationären Luftkraftbeiwerte ist die korrekte Modellierung der Turbulenzeffekte wesentlich entscheidender als für die Ermittlung der Kraftbeiwerte bei bewegtem Querschnitt.

Abbildung 11.1: Dreidimensionale Strömung um einen zweidimensionalen Körper

Zum Teil zeigt sich für einige Profile zwar eine moderate Übereinstimmung, aber insgesamt ist dies nicht ausreichend.
Kapitel 12

Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde das Werkzeug der numerischen Strömungsmechanik zur Bestimmung von bewegungsinduzierten Luftkräften anhand von über dreißig Querschnitten untersucht.

Die stationären Luftkraftbeiwerte wurden ebenfalls bestimmt. Die Strouhalzahl, die ein Maß für das Auftreten von Wirbelresonanzen ist, wurde für einige Profile, welche Schwankungen der Auftriebskraft in unbewegter Lage zeigten, ermittelt. Außerdem wurde das Phänomen der Wirbelresonanz noch mit der Methode der erzwungenen Schwingung untersucht.

Ziel dieser Arbeit war es, eine numerische Modellkonfiguration zu entwickeln, die als Vorhersageinstrument geeignet ist. Dieses Ziel wurde erreicht. Die vorgestellten
Abbildungsverzeichnis

1.1 Aeroelastisches Dreieck .. 3
1.2 Interdisziplinäres Dreieck 4
1.3 Unterschiedliche Nachweisverfahren 6
2.1 Zur Definition der mittleren Windgeschwindigkeit 10
2.2 Fachwerkträger .. 17
2.3 Trapezähnlicher Völlquerschnitt 18
2.4 Mehrteliger Brückenquerschnitt 19
3.1 Stromlinien eines harmonisch schwingenden stromlinienformigen Körpers 23
3.2 Stromlinien eines harmonisch schwingenden stumpfen Körpers 23
3.3 Freiheitsgrade und zugehörige Luftkräfte 24
3.4 Zur Definition der reduzierten Frequenz k 25
3.5 Luftkraftanteile ... 26
3.6 Dreidimensionale Darstellung der Flatterderivativa 27
3.7 Darstellung der Flatterderivativa nach Theodorsen in der komplexen Ebene .. 28
3.8 Güte der Näherungslösungen für die Theodorsen-Funktion C 29
4.1 Mechanisches Zweifreiheitsgradsystem mit generalisierten Koordinaten 38
4.2 Eigenfrequenzen ... 46
4.3 Dämpfungsgrade ... 47
4.4 Vergleich von Selberg-Formel und vollständiger Lösung mit theoretischen Flatterderivativa nach Theodorsen für den Datensatz 1 (Anhang F) .. 50

173
4.5 Eigenvektor des Rechenbeispiels

5.1 Vergleich von \hat{C} und C

5.2 Zeitverläufe der bewegungsinduzierten Luftkräfte im unterkritischen, kritischen und überkritischen Strömungszustand mit der analytischen Lösung der unendlich dünnen Platte

7.1 Teilgebiet Ω

7.2 Vergleich der numerischen Methoden zur Turbulenzmodellierung

7.3 Finite-Volumen-Netz eines plattenähnlichen Profils mit Verfeinerung des wandnahen Bereichs

7.4 zweidimensionales Kontrollvolumen

7.5 Randbedingungen des numerischen Modells

7.6 Signal $A_k(t)$ für $k = 0, 9$ (Profil GB) mit und ohne Turbulenzmodellierung

7.7 Auswertung mittels FFT

7.8 Berechnungsvorgang

8.1 Im Wasserkanal untersuchte Profile

8.2 Experimentell bestimmtes Flatterderivativum $c_{\alpha\alpha}$ einiger im Wasserkanal untersuchter Profile (TH: Analytisch berechnetes Flatterderivativum nach Theodorsen)

8.3 Wasserkanal (IAG Stuttgart) mit Brückenmodell

8.4 Modell der Chongqing-Brücke (C) aus Aluminium vor Einbau in den Wasserkanal

8.5 Flatterfrequenzen in Abhängigkeit von der Reynoldszahl

8.6 Flatterfrequenzen in Abhängigkeit von der Reynoldszahl

8.7 Flatterfrequenzen in Abhängigkeit von den Bewegungsamplituden

8.8 Flatterfrequenzen in Abhängigkeit von den Bewegungsamplituden

8.9 Experimenteller Aufbau der Methode der freien gekoppelten Schwingung

8.10 Versuchsaufbau

8.11 Vergleich der mit verschiedenen Methoden identifizierten Bewegungsparameter ω_i und λ_i, $i = 1, 2$

8.12 Zeitverlauf der Schwingung im überkritischen Fall ($\bar{u}_\infty = 16.1 \text{ m/s}$)
Abbildungsverzeichnis

8.13 Vergleich der Flatterderivativa des Profils R .. 119
9.1 Übersicht über untersuchte trapezförmige Vollquerschnitte 124
9.2 Zeitverläufe der Bewegungen und den daraus induzierten Luftkräften des Profils B9 125
9.3 Zeitverlauf des Druckes in verschiedenen Punkten auf der Profiloberfläche des Querschnitts GB ... 128
9.4 Übersicht über numerisch untersuchte trapezförmige Vollquerschnitte mit Leitblech ... 130
9.5 Übersicht über untersuchte Rechteckquerschnitte .. 130
9.6 Vergleich der Flatterderivativa der untersuchten Rechteckquerschnitte für den Freiheitsgrad Biegung ... 131
9.7 Zeitabhängige Druckverteilung um Profil P .. 132
9.8 Zeitverlauf des Druckes in verschiedenen Punkten auf der Profiloberfläche des Querschnitts P ... 133
9.9 Abhängigkeit des Absolutwertes des Flatterderivativums \(c''_{\alpha \alpha} \) von der Bewegungsamplitude (Profil R4) .. 136
9.10 Einfluss der Bewegungsamplitude auf \(c''_{\alpha \alpha} \) (Profil R4) bei konstanter reduzierter Frequenz \(k \) .. 137
9.11 Verlauf der Dämpfung und der Eigenfrequenz des Profils R20v 138
9.12 Übersicht über sonstige numerisch untersuchte Querschnitte 140
9.13 Vergleich der Flatterderivativa \(c_{\alpha \alpha} \) der Querschnitte C, C2 und C3 141
9.14 Zeitverläufe der Bewegungen und den daraus induzierten Luftkräften des Profils TC ... 142
9.15 Leistungsspektren des Profils TC für unterschiedliche Bewegungsfrequenzen, \(\omega = 1,2 ; 4,2 ; 6,0 \) .. 143
9.16 Vergleich der Flatterderivativa \(c''_{\alpha \alpha} \) der Profile TC und T2 143
9.17 Zeitverlauf des Druckes in verschiedenen Punkten auf der Profiloberfläche des Querschnitts TC ... 144
9.18 Störungszonen für unterschiedliche reduzierte Frequenzen \(k \) 146
9.19 Abklingbeiwerte von Vertikalbewegung und zugehörigen Luftkraftantworten ... 148
9.20 Zeitbereichssimulation der Schwingung des Profils TC im unterkritischen ($u_\infty=20 \text{ m/s}$), kritischen ($u_\infty=22.5 \text{ m/s}$) und überkritischen ($u_\infty=25 \text{ m/s}$) Strömungszustand. 149
9.21 Zeitbereichssimulation der Schwingung des Profils R im unterkritischen ($u_\infty=20 \text{ m/s}$), kritischen ($u_\infty=24 \text{ m/s}$) und überkritischen ($u_\infty=28 \text{ m/s}$) Strömungszustand. 150
9.22 Zeitbereichssimulation der Schwingung des Profils GB im unterkritischen ($u_\infty=38 \text{ m/s}$), kritischen ($u_\infty=41 \text{ m/s}$) und überkritischen ($u_\infty=45 \text{ m/s}$) Strömungszustand. 150
9.23 Zeitverlauf von bewegungsinduzierter Widerstandskraft und Luftkraftmoment infolge Rotationsbewegung. 151
9.24 Fouriertransformierte aller drei bewegungsinduzierten Luftkraftkomponenten infolge Rotationsbewegung. 152
9.25 Grafische Erklärung der Frequenz 2ω der instationären Widerstandskraft ($A_x = \text{Anströmfläche in x-Richtung}$). 152
9.26 Effektiver Anstellwinkel. 153
9.27 Einfluss des Anstellwinkels auf die Flatterderivativa des Profils B8. 155
9.28 Einfluss des Anstellwinkels auf die Flatterderivativa des Profils GB. 156
9.29 Einfluss des Anstellwinkels auf die Flatterderivativa des Profils C. 157
10.1 Betrag der instationären Auftriebskraft $c_{\alpha h}$ in Abhängigkeit von der reduzierten Frequenz für das Profil TC (Experimentelle Ergebnisse, $Re=100.000$). 160
10.2 $c_{\alpha h} \cdot \dot{\alpha}$ positiv. 160
10.3 $c_{\alpha h} \cdot \dot{\alpha}$ negativ. 161
10.4 Betrag der instationären Auftriebskraft $c_{\alpha h}$ in Abhängigkeit von der reduzierten Geschwindigkeit U_{red} für das Profil TC. 163
10.5 $c_{\alpha h}$ des Profils TC in Abhängigkeit von der Amplitude ($Re = 100000$) und in Abhängigkeit von der Reynoldszahl ($h = 2 \text{ mm}$). 164
11.1 Dreidimensionale Strömung um einen zweidimensionalen Körper. 169
A.1 Grafische Darstellung des Brückenprofils (alle Einheiten in cm). 189
A.2 Stationäre Luftkraftbeiwerte. 190
A.3 Flatterderivativa ($Re = 200.000$) für $h = 0, 04B$ und $\dot{\alpha} = 5^\circ$. 191
A.4 Stationäre Luftkraftbeiwerte (Profil GB) 193
A.5 Flatterderivativa (Profil GB) . 194
A.6 Stationäre Luftkraftbeiwerte (Profil B2) 195
A.7 Flatterderivativa (Profil B2) . 196
A.8 Stationäre Luftkraftbeiwerte (Profil B3) 197
A.9 Flatterderivativa (Profil B3) . 198
A.10 Stationäre Luftkraftbeiwerte (Profil B4) 199
A.11 Flatterderivativa (Profil B4) . 200
A.12 Stationäre Luftkraftbeiwerte (Profil B5) 201
A.13 Flatterderivativa (Profil B5) . 202
A.14 Stationäre Luftkraftbeiwerte (Profil B6) 203
A.15 Flatterderivativa (Profil B6) . 204
A.16 Stationäre Luftkraftbeiwerte (Profil B7) 205
A.17 Flatterderivativa (Profil B7) . 206
A.18 Stationäre Luftkraftbeiwerte (Profil B8) 207
A.19 Flatterderivativa (Profil B8) . 208
A.20 Stationäre Luftkraftbeiwerte (Profil M) 209
A.21 Flatterderivativa (Profil M) . 210
A.22 Stationäre Luftkraftbeiwerte (Profil B9) 211
A.23 Flatterderivativa (Profil B9) . 212
A.24 Stationäre Luftkraftbeiwerte (Profil B10) 213
A.25 Flatterderivativa (Profil B10) . 214
A.26 Stationäre Luftkraftbeiwerte (Profil B11) 215
A.27 Flatterderivativa (Profil B11) . 216
A.28 Stationäre Luftkraftbeiwerte (Profil B12) 217
A.29 Flatterderivativa (Profil B12) . 218
A.30 Stationäre Luftkraftbeiwerte (Profil B13) 219
A.31 Flatterderivativa (Profil B13) . 220
A.32 Stationäre Luftkraftbeiwerte (Profil B14) 221
A.33 Flatterderivativa (Profil B14) .. 222
A.34 Stationäre Luftkraftbeiwerte (Profil S) 223
A.35 Flatterderivativa (Profil S) ... 224
A.36 Stationäre Luftkraftbeiwerte (Profil L1) 225
A.37 Flatterderivativa (Profil L1) ... 226
A.38 Stationäre Luftkraftbeiwerte (Profil L2) 227
A.39 Flatterderivativa (Profil L2) ... 228
A.40 Stationäre Luftkraftbeiwerte (Profil L3) 229
A.41 Flatterderivativa (Profil L3) ... 230
A.42 Stationäre Luftkraftbeiwerte (Profil R4) 231
A.43 Flatterderivativa (Profil R4) ... 232
A.44 Stationäre Luftkraftbeiwerte (Profil R) 233
A.45 Flatterderivativa (Profil R) ... 234
A.46 Stationäre Luftkraftbeiwerte (Profil R16) 235
A.47 Flatterderivativa (Profil R16) .. 236
A.48 Stationäre Luftkraftbeiwerte (Profil R20v) 237
A.49 Flatterderivativa (Profil R20v) .. 238
A.50 Stationäre Luftkraftbeiwerte (Profil P) 239
A.51 Flatterderivativa (Profil P) ... 240
A.52 Stationäre Luftkraftbeiwerte (Profil R200) 241
A.53 Flatterderivativa (Profil R200) .. 242
A.54 Stationäre Luftkraftbeiwerte (Profil TC) 243
A.55 Flatterderivativa (Profil TC) ... 244
A.56 Stationäre Luftkraftbeiwerte (Profil T2) 245
A.57 Flatterderivativa (Profil T2) ... 246
A.58 Stationäre Luftkraftbeiwerte (Profil C) 247
A.59 Flatterderivativa (Profil C) ... 248
A.60 Stationäre Luftkraftbeiwerte (Profil C2) 249
A.61 Flatterderivativa (Profil C2) ... 250
Literaturverzeichnis

A.62 Stationäre Luftkraftbeiwerte (Profil C3) .. 251
A.63 Flatterderivativa (Profil C3) ... 252
A.64 Stationäre Luftkraftbeiwerte (Profil G) .. 253
A.65 Flatterderivativa (Profil G) ... 254

C.1 Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den Querschnitt der Brücke über den großen Belt ... 259
C.2 Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den Querschnitt S ... 259
C.3 Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den Querschnitt M ... 260
C.4 Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den Querschnitt P ... 260
C.5 Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den Rechteckquerschnitt $H:B = 1:8$ 261
C.6 Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den Querschnitt C ... 261
C.7 Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε ... 262
C.8 Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den offenen Querschnitt G (Datensatz 2 (Anhang F)) ... 262
Literaturverzeichnis

Anhang A

Untersuchte Profile

A.1 Erläuterung

In diesem Anhang sind alle numerischen und experimentell ermittelten Ergebnisse für die in Tabelle A.1 angegebenen Querschnitte angegeben. Neben der Darstellung der exakten Profilgeometrie und der Flatterderivativa werden auch die Parameterpaare \(a_i, b_i\) zur Polynom-Approximation der Flatterderivativa tabellarisch angegeben. Diese Parameter können auch für die Zeitbereichsberechnung verwendet werden. Zur Einschätzung der Genauigkeit der Polynom-Approximation werden zusätzlich noch die Fehlerresiduen angegeben. Die für die Zeitbereichsberechnung benötigten Parameter \(\frac{\mu}{\alpha = 0}\) und \(\frac{\mu}{\alpha = 0}\) werden ebenfalls angegeben. Hier werden die numerisch ermittelten Werte angegeben. Die experimentell ermittelten Vergleichswerte finden sich in Tabelle 8.3, da nicht für alle numerisch untersuchten Profile experimentelle Vergleichswerte vorhanden sind. Die Flatterderivativa für alle untersuchten Profile werden für eine Reynoldszahl von \(Re = 100,000\) angegeben. Wie im Hauptteil ist die Reynoldszahl immer bezogen die Profilänge \(B\), hier immer 1 m, bezogen.

Abbildung A.1: Grafische Darstellung des Brückenprofils (alle Einheiten in cm)
H:B

Verhältnis Höhe zu Breite

\[
\left. \frac{dc}{d\alpha} \right|_{\alpha=0} \quad \text{Steigung der stationären Auftriebskraft bei } \alpha = 0
\]

\[
\left. \frac{dc}{d\alpha} \right|_{\alpha=0} \quad \text{Steigung des stationären Luftkraftmoments bei } \alpha = 0
\]

<table>
<thead>
<tr>
<th>a₁</th>
<th>b₁</th>
<th>a₂</th>
<th>b₂</th>
<th>a₃</th>
<th>b₃</th>
<th>a₄</th>
<th>b₄</th>
<th>r</th>
</tr>
</thead>
</table>

Hier sind die Parameter der Polynom-Approximation angegeben. Sind weniger als vier Parameterpaare \(a_i, b_i\) angegeben, reichen die Anzahl der angegebenen Parameterpaare aus, um die Kurven hinreichend genau zu beschreiben. \(r\) gibt die Größe des Fehlerresiduums an.

Beispiel:

Abbildung A.2: Stationäre Luftkraftbeiwerte für Winkel \(-10^\circ \leq \alpha \leq 10^\circ\), Neigung des Profils im mathematisch positiven Drehsinn ist negativ angegeben, \(Re = 100.000\), \(\circ\) = mit CFD – Simulation ermittelt, – theoretisch, – – experimentell
Abbildung A.3: Flatterderivata ($Re = 200.000$) für $h = 0.04B$ und $\alpha = 5^\circ$
A.2 Übersicht

<table>
<thead>
<tr>
<th>Profilgruppe</th>
<th>Profil</th>
<th>Seite</th>
<th>Beschreibung, Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezähnliche Querschnitte</td>
<td>GB</td>
<td>S 193</td>
<td>Great Belt Bridge [61] [63]</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>S 196</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>S 197</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>S 199</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>S 201</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>S 203</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>S 205</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>B8</td>
<td>S 207</td>
<td>Trapezquerschnitt</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>S 209</td>
<td>Millan Bridge</td>
</tr>
<tr>
<td></td>
<td>B9</td>
<td>S 211</td>
<td>Tsurumi Bridge</td>
</tr>
<tr>
<td></td>
<td>B10</td>
<td>S 213</td>
<td>Tsingma Bridge</td>
</tr>
<tr>
<td></td>
<td>B11</td>
<td>S 215</td>
<td>Normandie Bridge</td>
</tr>
<tr>
<td></td>
<td>B12</td>
<td>S 217</td>
<td>Tataru Bridge</td>
</tr>
<tr>
<td></td>
<td>B13</td>
<td>S 219</td>
<td>Mexico</td>
</tr>
<tr>
<td></td>
<td>B14</td>
<td>S 221</td>
<td>Plattenartiges Profil</td>
</tr>
<tr>
<td>Trapezähnliche Querschnitte mit Leitblechen</td>
<td>S</td>
<td>S 223</td>
<td>Severn Bridge</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>S 225</td>
<td>Humber Bridge</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>S 227</td>
<td>Jiangyin Bridge</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>S 229</td>
<td>Messina Bridge</td>
</tr>
<tr>
<td>Rechteckprofile</td>
<td>R4</td>
<td>S 234</td>
<td>Rechteck B:H = 4:1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>S 233</td>
<td>Rechteck B:H = 8:1</td>
</tr>
<tr>
<td></td>
<td>R16</td>
<td>S 238</td>
<td>Rechteck B:H = 16:1</td>
</tr>
<tr>
<td></td>
<td>R20v</td>
<td>S 237</td>
<td>Rechteck mit Vertikalschott</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>S 239</td>
<td>Rechteck B:H = 25:1</td>
</tr>
<tr>
<td></td>
<td>R200</td>
<td>S 241</td>
<td>Rechteck B:H = 200:1</td>
</tr>
<tr>
<td>Sonstige</td>
<td>TC</td>
<td>S 243</td>
<td>Tacoma Bridge</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>S 245</td>
<td>Tacoma H:B = 1:10</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>S 247</td>
<td>Chongqing Bridge</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>S 249</td>
<td>Chongqing Variante</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>S 251</td>
<td>Chongqing ohne Flügel</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>S 253</td>
<td>Gibraltar Bridge [60] [62]</td>
</tr>
</tbody>
</table>

Tabelle A.1: Übersicht über die untersuchten Profile
A.3 Profil GB

\[H : B = 1 : 6.817 \]
\[\frac{dA}{ds} |_{\alpha=0} = 5.0420 \]
\[\frac{dA}{ds} |_{\alpha=0} = 1.4381 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{Ah})</td>
<td>0.1760</td>
<td>-0.0197</td>
<td>0.2133</td>
<td>0.6782</td>
<td>0.3848</td>
<td>0.0838</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{Ah})</td>
<td>0.2947</td>
<td>0.0022</td>
<td>0.1886</td>
<td>0.0409</td>
<td>0.4117</td>
<td>0.5019</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{Ah})</td>
<td>0.0700</td>
<td>-0.1991</td>
<td>0.3156</td>
<td>0.0920</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{Ah})</td>
<td>0.0928</td>
<td>-0.4148</td>
<td>0.3427</td>
<td>0.1015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung A.4: Stationäre Luftkraftbeiwerte (Profil GB)
Abbildung A.5: Flatterderivativa (Profil GB)
A.4 Profil B2

\[H : B = 1 : 6.124 \]

\[\frac{d^2 \alpha}{dx^2} |_{\alpha=0} = 3.3862 \]

\[\frac{d^2 \alpha}{dx^2} |_{\alpha=0} = 1.2720 \]

\[
\begin{array}{cccccccc}
\alpha_1 & b_1 & a_2 & b_2 & a_3 & b_3 & a_4 & b_4 & r \\
\hline
\end{array}
\]

- \[c_{\text{Loh}} \]
- \[c_{\text{Ahn}} \]
- \[c_{\text{Leh}} \]
- \[c_{\text{Ahn}} \]

Abbildung A.6: Stationäre Luftkraftbeiwerte (Profil B2)
Abbildung A.7: Flatterderivativa (Profil B2)
A.5 Profil B3

\[H : B = 1 : 6,817 \]
\[\frac{d_{\alpha}}{d_{\alpha} \mid \alpha = 0} = 4,0623 \]
\[\frac{d_{\alpha}^2}{d_{\alpha}^2 \mid \alpha = 0} = 1,3178 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\alpha})</td>
<td>0,5606</td>
<td>0,0057</td>
<td>0,1674</td>
<td>0,5187</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,0323</td>
</tr>
<tr>
<td>(c_{\alpha \alpha})</td>
<td>0,2596</td>
<td>-0,0260</td>
<td>0,2983</td>
<td>0,0250</td>
<td>0,3413</td>
<td>0,7576</td>
<td>-</td>
<td>0,0413</td>
</tr>
<tr>
<td>(c_{\alpha h})</td>
<td>0,3307</td>
<td>0,0650</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,0863</td>
</tr>
<tr>
<td>(c_{\alpha h h})</td>
<td>0,1043</td>
<td>-0,1186</td>
<td>0,2895</td>
<td>0,1433</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,1275</td>
</tr>
</tbody>
</table>

Abbildung A.8: Stationäre Luftkraftbeiwerte (Profil B3)
Abbildung A.9: Flatterderivativa (Profil B3)
Anhang

A.6 Profil B4

![Diagram of Profil B4](image)

\[H : B = 1 : 6.817 \]
\[\frac{\partial c_A}{\partial \alpha} \bigg|_{\alpha=0} = 4.5436 \]
\[\frac{\partial c_M}{\partial \alpha} \bigg|_{\alpha=0} = 1.3636 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\text{thd}})</td>
<td>0.4560</td>
<td>0.0233</td>
<td>0.3344</td>
<td>0.6898</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0281</td>
</tr>
<tr>
<td>(c_{\text{bias}})</td>
<td>0.3921</td>
<td>0.0018</td>
<td>0.0828</td>
<td>0.1297</td>
<td>0.4675</td>
<td>0.0769</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\text{chd}})</td>
<td>0.1075</td>
<td>-0.3069</td>
<td>0.3285</td>
<td>0.1437</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\text{com}})</td>
<td>0.0038</td>
<td>-0.2353</td>
<td>0.0779</td>
<td>-0.2278</td>
<td>0.3449</td>
<td>0.1415</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung A.10: Stationäre Luftkraftbeiwerte (Profil B4)
Abbildung A.11: Flatterderivativa (Profil B4)
A.7 Profil B5

\[H: B = \frac{1}{7.728} \]
\[\frac{\partial \alpha}{\partial \alpha} \bigg|_{\alpha=0} = 4.4863 \]
\[\frac{\partial \alpha}{\partial \alpha} \bigg|_{\alpha=0} = 1.3579 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{\text{anh}})</td>
<td>0.5134</td>
<td>0.0059</td>
<td>0.2427</td>
<td>0.2770</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0493</td>
</tr>
<tr>
<td>(\alpha_{\text{anh}})</td>
<td>0.3630</td>
<td>0.0252</td>
<td>0.2021</td>
<td>-0.0202</td>
<td>0.3460</td>
<td>0.5793</td>
<td>-</td>
<td>0.0472</td>
</tr>
<tr>
<td>(\alpha_{\text{anh}})</td>
<td>0.3128</td>
<td>0.0632</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0408</td>
</tr>
<tr>
<td>(\alpha_{\text{anh}})</td>
<td>-0.2650</td>
<td>0.8925</td>
<td>0.1110</td>
<td>-0.0366</td>
<td>0.3496</td>
<td>0.2272</td>
<td>-</td>
<td>0.0099</td>
</tr>
</tbody>
</table>

Abbildung A.12: Stationäre Luftkraftbeiwerte (Profil B5)
Abbildung A.13: Flatterderivativa (Profil B5)
A.8 Profil B6

\[H:B = 1:8.826 \]
\[\frac{\partial \alpha}{\partial x} \bigg|_{\alpha=0} = 4.3201 \]
\[\frac{\partial \alpha}{\partial x} \bigg|_{\alpha=0} = 1.3636 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\text{ah}})</td>
<td>0.3309</td>
<td>-0.0170</td>
<td>0.2916</td>
<td>0.1131</td>
<td>0.1369</td>
<td>0.8474</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\text{nh}})</td>
<td>0.3264</td>
<td>-0.0237</td>
<td>0.2294</td>
<td>0.0785</td>
<td>0.3278</td>
<td>0.7103</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\text{ah}})</td>
<td>0.3285</td>
<td>0.0788</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\text{aw}})</td>
<td>-0.2402</td>
<td>1.1005</td>
<td>0.0962</td>
<td>-0.0475</td>
<td>0.3459</td>
<td>0.2184</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung A.14: Stationäre Luftkraftbeiwerte (Profil B6)
Abbildung A.15: Flatterderivativa (Profil B6)
A.9 Profil B7

![Diagram of Profil B7]

\[H : B = 1 : 8,826 \]
\[\frac{\partial \delta_1}{\partial \alpha} \bigg|_{\alpha=0} = 5,1108 \]
\[\frac{\partial \delta_2}{\partial \alpha} \bigg|_{\alpha=0} = 1,4324 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{A,b})</td>
<td>0.3847</td>
<td>0.0502</td>
<td>0.3329</td>
<td>0.4851</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0611</td>
</tr>
<tr>
<td>(c_{A,w})</td>
<td>0.3428</td>
<td>0.0264</td>
<td>0.1326</td>
<td>0.2228</td>
<td>0.3631</td>
<td>0.6614</td>
<td>-</td>
<td>0.1907</td>
</tr>
<tr>
<td>(c_{A,h})</td>
<td>0.1059</td>
<td>-0.6481</td>
<td>0.3526</td>
<td>0.1329</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0273</td>
</tr>
<tr>
<td>(c_{A,\alpha})</td>
<td>0.0884</td>
<td>-0.5087</td>
<td>0.3670</td>
<td>0.1384</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1900</td>
</tr>
</tbody>
</table>

Abbildung A.16: Stationäre Luftkraftbeiwerte (Profil B7)
Abbildung A.17: Flatterderivativa (Profil B7)
A.10 Profil B8

\[H:B = 1:7.163 \]

\[\left. \frac{d c_A}{d \alpha} \right|_{\alpha=0} = 9.0298 \]

\[\left. \frac{d c_M}{d \alpha} \right|_{\alpha=0} = 1.4324 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{A_h})</td>
<td>-0.2814</td>
<td>0.0105</td>
<td>0.3791</td>
<td>0.1624</td>
<td>0.4897</td>
<td>0.1620</td>
<td>-0.1597</td>
<td>0.8837</td>
</tr>
<tr>
<td>(c_{A_v})</td>
<td>0.2600</td>
<td>0.1988</td>
<td>0.2541</td>
<td>0.1989</td>
<td>0.3457</td>
<td>0.1980</td>
<td>-0.2197</td>
<td>0.8420</td>
</tr>
<tr>
<td>(c_{w_h})</td>
<td>0.2938</td>
<td>0.0799</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{w_v})</td>
<td>0.2664</td>
<td>0.0119</td>
<td>0.1923</td>
<td>0.6686</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung A.18: Stationäre Luftkraftbeiwerte (Profil B8)
Abbildung A.19: Flatterderivativa (Profil B8)
A.11 Profil M

\[H:B = 1:6.667 \]
\[\frac{d^2a}{d\alpha^2} \bigg|_{\alpha=0} = 3.9649 \]
\[\frac{d^2c}{dx^2} \bigg|_{\alpha=0} = 1.1975 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\alpha b})</td>
<td>0.2977</td>
<td>0.0073</td>
<td>0.2559</td>
<td>0.5902</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0176</td>
</tr>
<tr>
<td>(c_{\alpha a})</td>
<td>0.2239</td>
<td>-0.0081</td>
<td>0.0983</td>
<td>0.3036</td>
<td>0.3514</td>
<td>0.6222</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\alpha b})</td>
<td>0.2906</td>
<td>0.1368</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0736</td>
</tr>
<tr>
<td>(c_{\alpha a})</td>
<td>0.1020</td>
<td>-0.0248</td>
<td>0.3165</td>
<td>0.3566</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0328</td>
</tr>
</tbody>
</table>

Abbildung A.20: Stationäre Luftkraftbeiwerte (Profil M)
Abbildung A.21: Flatterderivativa (Profil M)
A.12 Profil B9

\[H:B = 1 : 10.384 \]
\[\left. \frac{d \alpha}{d \alpha} \right|_{\alpha=0} = 4.9160 \]
\[\left. \frac{d \alpha}{d M} \right|_{\alpha=0} = 1.4439 \]

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\text{Ah}})</td>
<td>0.3375</td>
<td>0.0169</td>
<td>0.2949</td>
<td>0.2637</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0821</td>
</tr>
<tr>
<td>(c_{\text{Aw}})</td>
<td>0.3251</td>
<td>0.0105</td>
<td>0.1345</td>
<td>0.1996</td>
<td>0.2987</td>
<td>0.6031</td>
<td>-</td>
<td>-</td>
<td>0.1958</td>
</tr>
<tr>
<td>(c_{\text{Ah}})</td>
<td>0.3588</td>
<td>0.1157</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0410</td>
</tr>
<tr>
<td>(c_{\text{Aw}})</td>
<td>0.0588</td>
<td>-0.3694</td>
<td>0.3636</td>
<td>0.1593</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1646</td>
</tr>
</tbody>
</table>

Abbildung A.22: Stationäre Luftkraftbeiwerte (Profil B9)
Abbildung A.23: Flatterderivativa (Profil B9)
A.13 Profil B10

\[H \cdot B = 1 : 5.695 \]
\[\frac{\partial \alpha}{\partial \alpha} \bigg|_{\alpha=0} = 4.8759 \]
\[\frac{\partial \alpha}{\partial \alpha} \bigg|_{\alpha=0} = 1.3178 \]

\[
\begin{array}{cccccccc}
 \alpha_1 & b_1 & \alpha_2 & b_2 & \alpha_3 & b_3 & \alpha_4 & b_4 & r \\
 c_{kh} & 0.4550 & 1.1392 & 0.5074 & 0.6725 & - & - & - & 0.0042 \\
 c_{kn} & 0.4918 & 0.0593 & 0.5945 & 0.9823 & - & - & - & 0.0174 \\
 c_{th} & 0.3351 & -2.0582 & 0.3938 & 0.9941 & - & - & - & 0.0058 \\
 c_{tn} & -0.2988 & -0.2493 & 0.4221 & -0.8939 & 0.5155 & 0.0411 & - & 0.0371 \\
\end{array}
\]

Abbildung A.24: Stationäre Luftkraftbeiwerte (Profil B10)
Abbildung A.25: Flatterderivativa (Profil B10)
A.14 Profil B11

\[H : B = 1 : 7,734 \]
\[\frac{d \alpha}{dx |_{\alpha=0}} = 4,5092 \]
\[\frac{d \alpha}{dx |_{\alpha=0}} = 1,6215 \]

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
 & \(a_1\) & \(b_1\) & \(a_2\) & \(b_2\) & \(a_3\) & \(b_3\) & \(a_4\) & \(b_4\) & \(r\) \\
\hline
\(c_{\alpha A}\) & 0.4786 & 0.0319 & 0.2313 & 0.7805 & - & - & - & - & 0.0697 \\
\hline
\(c_{\alpha M}\) & 0.2847 & -0.0005 & 0.0935 & 0.0735 & 0.3432 & 0.6385 & - & - & 0.1251 \\
\hline
\(c_{\alpha W}\) & 0.1203 & -0.1199 & 0.3969 & 0.1291 & - & - & - & - & 0.0129 \\
\hline
\(c_{\alpha N}\) & -0.3075 & 0.6670 & 0.1019 & -0.0298 & 0.5886 & 0.3205 & - & - & 0.0132 \\
\hline
\end{tabular}
\end{table}

Abbildung A.26: Stationäre Luftkraftbeiwerte (Profil B11)
Abbildung A.27: Flatterderivativa (Profil B11)
A.15 Profil B12

Abbildung A.28: Stationäre Luftkraftbeiwerte (Profil B12)
Abbildung A.29: Flatterderivativa (Profil B12)
A.16 Profil B13

\[H : B = \frac{1}{10.718} \]

\[\left. \frac{\partial \alpha}{\partial x} \right|_{\alpha=0} = 4.9446 \]

\[\left. \frac{\partial \alpha}{\partial x} \right|_{\alpha=0} = 1.2949 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\text{A}})</td>
<td>0.1358</td>
<td>0.3853</td>
<td>0.1177</td>
<td>0.1963</td>
<td>0.3936</td>
<td>0.0216</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\text{h}})</td>
<td>0.3662</td>
<td>0.0024</td>
<td>0.1270</td>
<td>0.1950</td>
<td>0.2766</td>
<td>0.6304</td>
<td>-0.0117</td>
<td>0.3158</td>
</tr>
<tr>
<td>(c_{\text{mb}})</td>
<td>0.4015</td>
<td>0.0722</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\text{gw}})</td>
<td>0.1069</td>
<td>-0.0926</td>
<td>0.3481</td>
<td>0.1570</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung A.30: Stationäre Luftkraftbeiwerte (Profil B13)
Abbildung A.31: Flatterderivativa (Profil B13)
A.17 Profil B14

\[H:B = 1 : 50 \]
\[\frac{dA_c}{d\alpha} = 5,2712 \]
\[\frac{dM_c}{d\alpha} = 1,4840 \]

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(c)</th>
<th>(d)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\text{Ah}})</td>
<td>0,5147</td>
<td>0,1238</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,0660</td>
</tr>
<tr>
<td>(c_{\text{Am}})</td>
<td>0,2139</td>
<td>-0,0415</td>
<td>-0,0652</td>
<td>-0,3216</td>
<td>0,3836</td>
<td>0,2822</td>
<td>-</td>
<td>-</td>
<td>0,1864</td>
</tr>
<tr>
<td>(c_{\text{Ah}})</td>
<td>0,4176</td>
<td>0,1391</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,0074</td>
</tr>
<tr>
<td>(c_{\text{Am}})</td>
<td>0,0353</td>
<td>-0,3020</td>
<td>0,4148</td>
<td>0,2132</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,0569</td>
</tr>
</tbody>
</table>

Abbildung A.32: Stationäre Luftkraftbeiwerte (Profil B14)
Abbildung A.33: Flatterderivativa (Profil B14)
A.18 Profil S

\[H : B = 1 : 9.775 \]
\[\frac{\partial C_d}{\partial \alpha_{10=0}} = 6.5947 \]
\[\frac{\partial C_M}{\partial \alpha_{10=0}} = 2.7158 \]

<table>
<thead>
<tr>
<th>(\alpha _h)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5344</td>
<td>0.0516</td>
<td>0.3815</td>
<td>1.2963</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0351</td>
<td></td>
</tr>
<tr>
<td>0.2206</td>
<td>0.0250</td>
<td>0.4174</td>
<td>0.5293</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0394</td>
<td></td>
</tr>
<tr>
<td>0.1421</td>
<td>-0.1390</td>
<td>0.5775</td>
<td>0.0779</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>0.4193</td>
<td>0.2117</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0484</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung A.34: Stationäre Luftkraftbeiwerte (Profil S)
Abbildung A.35: Flatterderivativa (Profil S)
A.19 Profil L1

\[H : B = 1 : 6.220 \]
\[\frac{\partial b}{\partial \alpha} \bigg|_{\alpha = 0} = 2.1429 \]
\[\frac{\partial b}{\partial \alpha} \bigg|_{\alpha = 0} = 2.0512 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{ab})</td>
<td>-0.3687</td>
<td>-2.2092</td>
<td>0.5178</td>
<td>-0.0210</td>
<td>-0.4929</td>
<td>0.1269</td>
<td>0.6453</td>
<td>0.0013</td>
</tr>
<tr>
<td>(c_{ba})</td>
<td>0.1015</td>
<td>-0.0933</td>
<td>-0.3262</td>
<td>0.1977</td>
<td>0.3799</td>
<td>1.0723</td>
<td>0.0970</td>
<td>0.0000</td>
</tr>
<tr>
<td>(c_{ah})</td>
<td>0,4170</td>
<td>-0.0659</td>
<td>0.2245</td>
<td>0.3011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0130</td>
</tr>
<tr>
<td>(c_{ah})</td>
<td>0.1645</td>
<td>-0.0759</td>
<td>0.2972</td>
<td>0.4667</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0350</td>
</tr>
</tbody>
</table>

Abbildung A.36: Stationäre Luftkraftbeiwerte (Profil L1)
Abbildung A.37: Flatterderivativa (Profil L1)
A.20 Profil L2

\[H : B = 1 : 12.763 \]
\[\frac{d \alpha}{d v} \bigg|_{\alpha=0} = 5.5691 \]
\[\frac{d \alpha}{d v} \bigg|_{\alpha=0} = 1.7647 \]

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\zeta_h)</td>
<td>0.4756</td>
<td>0.0538</td>
<td>0.2297</td>
<td>0.8854</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0633</td>
</tr>
<tr>
<td>(\zeta_{\alpha h})</td>
<td>0.1670</td>
<td>0.0307</td>
<td>0.0794</td>
<td>0.0333</td>
<td>0.3191</td>
<td>0.4210</td>
<td>-</td>
<td>-</td>
<td>0.1543</td>
</tr>
<tr>
<td>(\zeta_{\alpha h})</td>
<td>0.1949</td>
<td>-0.0597</td>
<td>0.3969</td>
<td>0.1349</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0041</td>
</tr>
<tr>
<td>(\zeta_{\alpha h})</td>
<td>0.0622</td>
<td>-0.1127</td>
<td>0.4111</td>
<td>0.2106</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0245</td>
</tr>
</tbody>
</table>

Abbildung A.38: Stationäre Luftkraftbeiwerte (Profil L2)
Abbildung A.39: Flatterderivativa (Profil L2)
Anhang

A.21 Profil L3

\[H : B = 1 : 13.374 \]
\[\frac{d \alpha}{ds} \bigg|_{\alpha = 0} = 6.0562 \]
\[\frac{d \alpha}{ds} \bigg|_{\alpha = 0} = 1.8564 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\alpha H})</td>
<td>0.5045</td>
<td>0.0829</td>
<td>0.2338</td>
<td>1.0283</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\alpha W})</td>
<td>0.1479</td>
<td>-0.0046</td>
<td>0.1495</td>
<td>0.1462</td>
<td>0.3269</td>
<td>0.4826</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\alpha R})</td>
<td>0.5829</td>
<td>0.0613</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{\alpha \alpha})</td>
<td>0.0562</td>
<td>-0.1789</td>
<td>0.4124</td>
<td>0.1972</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung A.40: Stationäre Luftkraftbeiwerte (Profil L3)
Abbildung A.41: Flatterderivativa (Profil L3)
A.22 Profil R4

\[H : B = 1 : 4 \]

\[\frac{d \alpha}{d \alpha \mid \alpha = 0} = 10.9435 \]

\[\frac{d \alpha}{d \alpha \mid \alpha = 0} = -1.3522 \]

\[\begin{array}{cccccccccc}
 & a_1 & b_1 & a_2 & b_2 & a_3 & b_3 & a_4 & b_4 & r \\
\hline
 c_{h\alpha} & 0.8820 & 0.9535 & 0.8004 & 0.0807 & 0.0910 & 0.9527 & -1.2659 & 0.1392 & 2.1086 \\
 c_{h\alpha} & -2.1263 & 0.0832 & 1.1185 & 0.4927 & 1.3692 & 0.4912 & 1.4057 & 0.2749 & 15.4593 \\
 c_{h\alpha} & 1.4516 & -0.1193 & -0.8151 & -2.2238 & -1.3348 & 0.4007 & - & - & 0.1076 \\
 c_{\alpha\alpha} & 1.8073 & -0.0631 & 3.4827 & 4.5444 & -1.7237 & 0.1337 & -17.5529 & 7.7797 & 1.2361 \\
\end{array} \]

Abbildung A.42: Stationäre Luftkraftbeiwerte (Profil R4)
Abbildung A.43: Flatterderivativa (Profil R4)
A.23 Profil R

\[H : B = 1 : 8 \]
\[\frac{d\alpha}{d\alpha} \mid \alpha = 0 = 12,8400 \]
\[\frac{d\alpha}{d\alpha} \mid \alpha = 0 = 0,3495 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1903</td>
<td>0,2609</td>
<td>0,5387</td>
<td>0,1924</td>
<td>0,7433</td>
<td>0,1797</td>
<td>-0,9571</td>
<td>0,0458</td>
<td>0,2126</td>
</tr>
<tr>
<td>-1,3379</td>
<td>0,0712</td>
<td>0,6854</td>
<td>0,3293</td>
<td>0,1499</td>
<td>0,3276</td>
<td>0,6776</td>
<td>0,1649</td>
<td>16,5075</td>
</tr>
<tr>
<td>0,7554</td>
<td>-0,0403</td>
<td>-0,6188</td>
<td>0,3276</td>
<td>0,1499</td>
<td>0,6776</td>
<td>0,1649</td>
<td>16,5075</td>
<td></td>
</tr>
<tr>
<td>-0,3651</td>
<td>-0,9145</td>
<td>-1,5360</td>
<td>0,1232</td>
<td>0,4734</td>
<td>0,6766</td>
<td>1,4818</td>
<td>0,0068</td>
<td>0,6929</td>
</tr>
</tbody>
</table>

Abbildung A.44: Stationäre Luftkraftbeiwerte (Profil R)
Abbildung A.45: Flatterderivativa (Profil R)
A.24 Profil R16

\[H:B = 1 : 16 \]
\[\frac{dC_A}{d\alpha} \bigg|_{\alpha=0} = 6.4286 \]
\[\frac{dC_M}{d\alpha} \bigg|_{\alpha=0} = 0.8422 \]

<table>
<thead>
<tr>
<th>α</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
<th>a_3</th>
<th>b_3</th>
<th>a_4</th>
<th>b_4</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_A</td>
<td>0.8139</td>
<td>0.4548</td>
<td>0.7471</td>
<td>0.1504</td>
<td>-0.6829</td>
<td>0.0095</td>
<td>-0.5078</td>
<td>-0.0004</td>
</tr>
<tr>
<td>c_{α}</td>
<td>-0.7447</td>
<td>0.0370</td>
<td>0.4196</td>
<td>0.2648</td>
<td>0.6717</td>
<td>0.2589</td>
<td>0.3794</td>
<td>0.1881</td>
</tr>
<tr>
<td>c_m</td>
<td>0.2368</td>
<td>0.1914</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$c_{\alpha\alpha}$</td>
<td>-0.2695</td>
<td>-1.1049</td>
<td>-0.8031</td>
<td>0.1072</td>
<td>0.5336</td>
<td>0.8940</td>
<td>0.8987</td>
<td>-0.0161</td>
</tr>
</tbody>
</table>

Abbildung A.46: Stationäre Luftkraftbeiwerte (Profil R16)
Abbildung A.47: Flatterderivativa (Profil R16)
A.25 Profil R20v

\[\frac{d c_A}{d \alpha} |_{\alpha = 0} = 6.1421 \]
\[\frac{d c_M}{d \alpha} |_{\alpha = 0} = 2.1314 \]

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\text{DA}})</td>
<td>0.8561</td>
<td>0.1312</td>
<td>-0.4477</td>
<td>0.0942</td>
<td>-0.3050</td>
<td>0.0889</td>
<td>-0.5552</td>
<td>1.4372</td>
<td>1.0014</td>
</tr>
<tr>
<td>(c_{\text{DA}})</td>
<td>0.2827</td>
<td>0.1099</td>
<td>0.3000</td>
<td>0.1099</td>
<td>0.3679</td>
<td>0.1099</td>
<td>-1.4679</td>
<td>0.8930</td>
<td>37.9388</td>
</tr>
<tr>
<td>(c_{\text{DA}})</td>
<td>-0.5572</td>
<td>-0.0750</td>
<td>0.3786</td>
<td>0.1200</td>
<td>0.5887</td>
<td>0.5500</td>
<td>0.7349</td>
<td>0.9563</td>
<td>0.0943</td>
</tr>
<tr>
<td>(c_{\text{DA}})</td>
<td>0.1987</td>
<td>0.1519</td>
<td>0.5409</td>
<td>0.1369</td>
<td>0.7138</td>
<td>0.1359</td>
<td>-0.9006</td>
<td>0.0866</td>
<td>1.1202</td>
</tr>
</tbody>
</table>

Abbildung A.48: Stationäre Luftkraftbeiwerte (Profil R20v)
Abbildung A.49: Flatterderivativa (Profil R20v)
A.26 Profil P

\[H:B = 1 : 25 \]

\[\frac{dA}{d\alpha} \bigg|_{\alpha=0} = 8,6689 \]

\[\frac{dM}{d\alpha} \bigg|_{\alpha=0} = 2,0397 \]

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
 & & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\hline
a_1 & b_1 & a_2 & b_2 & a_3 & b_3 & a_4 & b_4 & r \\
\hline
c_{chA} & -0.3792 & 0.0305 & 0.3501 & 0.1621 & 0.4352 & 0.1621 & - & - & 0.0100 \\
c_{chh} & -0.1386 & 0.3508 & 0.4346 & 0.2006 & 0.5728 & 0.2008 & -0.3741 & 0.0002 & 0.1663 \\
c_{chb} & -1.2105 & 0.8927 & 1.1992 & 3.0601 & 0.9486 & 0.4534 & - & - & 0.0582 \\
c_{chab} & 0.1917 & 0.1250 & 0.3903 & 0.9618 & - & - & - & - & 0.0906 \\
\hline
\end{tabular}

Abbildung A.50: Stationäre Luftkraftbeiwerte (Profil P)
Abbildung A.51: Flatterderivativa (Profil P)
A.27 Profil R200

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
 & a_1 & b_1 & a_2 & b_2 & a_3 & b_3 & a_4 & b_4 & r \\
\hline
c_{0A} & 0.8290 & 0.3480 & - & - & - & - & - & - & 0.0194 \\
c_{0h} & 0.8345 & 0.0043 & 0.0066 & 0.3545 & 0.3951 & 0.5573 & -0.8308 & 0.2082 & 5.3673 \\
c_{0hA} & 0.4373 & 0.0666 & - & - & - & - & - & - & 0.0159 \\
c_{0hA} & -1.5792 & 0.4840 & 1.3620 & 0.1354 & 1.5997 & 0.1354 & -1.7951 & 0.0002 & 12.4786 \\
\hline
\end{tabular}
\end{center}

$H:B = 1:200$

$\frac{\partial c_a}{\partial \alpha} \Big|_{\alpha=0} = 7.1161$

$\frac{\partial c_{0m}}{\partial \alpha} \Big|_{\alpha=0} = 1.5756$

Abbildung A.52: Stationäre Luftkraftbeiwerte (Profil R200)
Abbildung A.53: Flatterderivativa (Profil R200)
A.28 Profil TC

$H:B = 1:5$

\[
\begin{align*}
\frac{dc}{dc} \bigg|_{\alpha=0} & = 6.7953 \\
\frac{dc}{dc} \bigg|_{\alpha=0} & = -0.3552
\end{align*}
\]

<table>
<thead>
<tr>
<th>a_1</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
<th>a_3</th>
<th>b_3</th>
<th>a_4</th>
<th>b_4</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{th}</td>
<td>1.9399</td>
<td>0.0907</td>
<td>2.0737</td>
<td>0.0907</td>
<td>2.2034</td>
<td>0.0907</td>
<td>-5.5849</td>
<td>0.1617</td>
</tr>
<tr>
<td>c_{th}</td>
<td>5.4932</td>
<td>0.6029</td>
<td>-3.5491</td>
<td>0.2606</td>
<td>1.2566</td>
<td>4.0774</td>
<td>-5.3240</td>
<td>-4.3514</td>
</tr>
<tr>
<td>c_{th}</td>
<td>1.3512</td>
<td>-0.1923</td>
<td>-2.9506</td>
<td>-0.0295</td>
<td>-1.2309</td>
<td>0.7626</td>
<td>-3.6826</td>
<td>0.1903</td>
</tr>
<tr>
<td>$c_{R_{\infty}}$</td>
<td>0.4442</td>
<td>-0.4391</td>
<td>-0.8257</td>
<td>-0.1282</td>
<td>-1.2551</td>
<td>0.3165</td>
<td>2.0694</td>
<td>-2.9812</td>
</tr>
</tbody>
</table>

Abbildung A.54: Stationäre Luftkraftbeiwerte (Profil TC)
Abbildung A.55: Flatterderivativa (Profil TC)
A.29 Profil T2

\[H.B \quad = \quad 1 : 10 \]
\[\frac{d_{cA}}{d_{\alpha}} \mid_{\alpha=0} \quad = \quad 12.9488 \]
\[\frac{d_{cM}}{d_{\alpha}} \mid_{\alpha=0} \quad = \quad 0.4813 \]

\[c_{A\alpha} \quad -1.3404 \quad 0.0048 \quad 0.6076 \quad 0.4102 \quad 1.1435 \quad 0.4098 \quad 1.6114 \quad 1.0798 \quad 9.2414 \]
\[c_{A_{\text{hub}}} \quad -1.0452 \quad 0.0790 \quad 0.9563 \quad 0.2848 \quad 1.1649 \quad 0.2846 \quad 0.0170 \quad 0.6737 \quad 32.2188 \]
\[c_{A_{\text{tab}}} \quad -0.6768 \quad -0.9304 \quad -0.4143 \quad 1.5340 \quad -1.7892 \quad 0.2470 \quad 2.1470 \quad -0.1030 \quad 1.7898 \]
\[c_{A_{\text{tan}}} \quad -0.4724 \quad -0.871 \quad 1.2742 \quad -0.014 \quad -1.1743 \quad 0.2255 \quad -0.0538 \quad 0.8942 \quad 6.5836 \]

Abbildung A.56: Stationäre Luftkraftbeiwerte (Profil T2)
Abbildung A.57: Flatterderivativa (Profil T2)
A.30 Profil C

\[H : B = 1 : 9,597 \]

\[\frac{d c_{\alpha}}{d \alpha}_{\alpha=0} = 3,7873 \]

\[\frac{d c_{\alpha}}{d \alpha}_{\alpha=0} = 0,0802 \]

\[\begin{array}{cccccccc}
 a_1 & b_1 & a_2 & b_2 & a_3 & b_3 & a_4 & b_4 & r \\
 c_{ch} & -2,1602 & 0,4144 & 1,1710 & 0,6019 & 1,3576 & 0,6018 & - & 15,6490 \\
 c_{ch} & -1,3894 & 0,4142 & 0,3252 & 0,6765 & 1,9275 & 0,6725 & - & 55,3341 \\
 c_{ch} & 1,1719 & -0,0255 & -0,8888 & 0,1635 & 0,2847 & 1,0882 & - & 4,1457 \\
 c_{ch} & 0,9300 & -0,0078 & -0,6331 & 0,1791 & 0,2481 & 0,9491 & - & 6,8530 \\
\end{array} \]

Abbildung A.58: Stationäre Luftkraftbeiwerte (Profil C)
Abbildung A.59: Flatterderivativa (Profil C)
Anhang

A.31 Profil C2

![Diagram of Profil C2]

\[H : B = 1 : 9.597 \]
\[\frac{d \alpha}{d \alpha}_{\alpha = 0} = 3.9248 \]
\[\frac{d \alpha}{d \alpha}_{\alpha = 0} = -0.3552 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{A0})</td>
<td>-0.9830</td>
<td>0.0397</td>
<td>0.3392</td>
<td>1.6629</td>
<td>0.6702</td>
<td>0.9854</td>
<td>1.0282</td>
<td>0.1937</td>
</tr>
<tr>
<td>(c_{A1})</td>
<td>-1.0968</td>
<td>0.1082</td>
<td>0.7252</td>
<td>0.4682</td>
<td>0.9648</td>
<td>0.1594</td>
<td>0.5184</td>
<td>0.0467</td>
</tr>
<tr>
<td>(c_{A2})</td>
<td>1.1582</td>
<td>-0.0582</td>
<td>-0.8086</td>
<td>0.1469</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_{A3})</td>
<td>0.6048</td>
<td>0.0126</td>
<td>-1.1871</td>
<td>0.1671</td>
<td>0.6914</td>
<td>1.1560</td>
<td>0.6719</td>
<td>-0.0002</td>
</tr>
</tbody>
</table>

Abbildung A.60: Stationäre Luftkraftbeiwerte (Profil C2)
Abbildung A.61: Flatterderivativa (Profil C2)
A.32 Profil C3

\[H \cdot B = 1 : 7,918 \]
\[\left. \frac{dc}{d\alpha} \right|_{\alpha=0} = 8,4225 \]
\[\left. \frac{dc}{d\alpha} \right|_{\alpha=0} = 0,2063 \]

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{A})</td>
<td>-1,4184</td>
<td>0,0791</td>
<td>0,5824</td>
<td>0,4161</td>
<td>1,4491</td>
<td>0,4161</td>
<td>19,2031</td>
<td>6,2087</td>
<td>1,7152</td>
</tr>
<tr>
<td>(c_{B})</td>
<td>-1,8360</td>
<td>0,1079</td>
<td>1,1419</td>
<td>0,4280</td>
<td>1,3816</td>
<td>0,4269</td>
<td>0,7925</td>
<td>0,0731</td>
<td>27,1468</td>
</tr>
<tr>
<td>(c_{H})</td>
<td>0,6977</td>
<td>-0,0374</td>
<td>-0,7157</td>
<td>0,1816</td>
<td>-0,6709</td>
<td>0,1052</td>
<td>1,0215</td>
<td>0,0000</td>
<td>0,6285</td>
</tr>
<tr>
<td>(c_{W})</td>
<td>-0,4796</td>
<td>-0,8041</td>
<td>0,4693</td>
<td>0,0210</td>
<td>-1,3136</td>
<td>0,1752</td>
<td>1,0780</td>
<td>-0,0002</td>
<td>0,8453</td>
</tr>
</tbody>
</table>

Abbildung A.62: Stationäre Luftkräftebeiwerte (Profil C3)
Abbildung A.63: Flatterderivativa (Profil C3)
A.33 Profil G

\[H:B = 1 : 25,974 \]
\[\frac{d\alpha}{dv} \bigg|_{\alpha=0} = 1,6157 \]
\[\frac{d\alpha}{dv} \bigg|_{\alpha=0} = 0,7620 \]

\[
\begin{array}{cccccccc}
 a_1 & b_1 & a_2 & b_2 & a_3 & b_3 & a_4 & b_4 \\
 r_{ub} & 0.3470 & 0.0087 & 0.1394 & 0.0087 & 1.6000 & 5.0597 & 0.3380 & 0.0004 & 0.1861 \\
 r_{ub} & 0.1544 & 0.0198 & 0.0135 & 0.1109 & 0.5290 & 0.8161 & 0.5842 & 0.0000 & 0.6587 \\
 r_{ub} & 0.4524 & 0.0039 & 0.5574 & 1.4575 & - & - & - & - & 0.0129 \\
 r_{ub} & 0.1749 & 0.0592 & -0.1161 & 0.1985 & 0.3030 & 0.6450 & 0.4509 & 0.0336 & 0.1455 \\
\end{array}
\]

Abbildung A.64: Stationäre Luftkraftbeiwerte (Profil G)
Abbildung A.65: Flatterderivativa (Profil G)
Anhang B

Parameter der Jones-Approximation der experimentellen Flatterderivativa

Die folgenden Parameter der Jones-Approximation nach Gleichung 5.7 sind für die experimentellen Flatterderivativa unter den folgenden Bedingungen bestimmt worden:

\[Re = 200.000 \]
\[\hat{h} = 0.04B \]
\[\hat{a} = 5^\circ \]

B.1 Profil GB

<table>
<thead>
<tr>
<th>(c_{xa})</th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1731</td>
<td>0.1839</td>
<td>0.3592</td>
<td>0.184</td>
<td>1.4372</td>
<td>7.1327</td>
<td>-</td>
<td>-</td>
<td>0.8707</td>
<td></td>
</tr>
<tr>
<td>0.5101</td>
<td>0.7634</td>
<td>0.3711</td>
<td>0.0932</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.8456</td>
<td></td>
</tr>
<tr>
<td>0.2349</td>
<td>2.1435</td>
<td>0.3671</td>
<td>0.0409</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0825</td>
<td></td>
</tr>
<tr>
<td>0.0735</td>
<td>0.4267</td>
<td>0.3494</td>
<td>0.0149</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0663</td>
<td></td>
</tr>
</tbody>
</table>
B.2 Profil S

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
<th>a_3</th>
<th>b_3</th>
<th>a_4</th>
<th>b_4</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{ah}</td>
<td>0.197</td>
<td>0.3117</td>
<td>0.8921</td>
<td>0.0412</td>
<td>0.3892</td>
<td>2.6153</td>
<td>-0.5775</td>
<td>6.0145</td>
<td>0.5144</td>
</tr>
<tr>
<td>c_{ch}</td>
<td>0.2311</td>
<td>0.4676</td>
<td>0.4601</td>
<td>0.0223</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.127</td>
</tr>
<tr>
<td>c_{ah}</td>
<td>0.2496</td>
<td>1.9266</td>
<td>0.0737</td>
<td>0.0912</td>
<td>0.2808</td>
<td>0.0902</td>
<td>-</td>
<td>-</td>
<td>0.0722</td>
</tr>
<tr>
<td>c_{cas}</td>
<td>0.2128</td>
<td>0.2653</td>
<td>0.2955</td>
<td>0.0166</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0185</td>
</tr>
</tbody>
</table>

B.3 Profil M

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
<th>a_3</th>
<th>b_3</th>
<th>a_4</th>
<th>b_4</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{ah}</td>
<td>0.1175</td>
<td>0.0</td>
<td>0.1532</td>
<td>0.0316</td>
<td>0.9894</td>
<td>7.2728</td>
<td>0.3729</td>
<td>0.1044</td>
<td>0.1742</td>
</tr>
<tr>
<td>c_{ch}</td>
<td>0.3066</td>
<td>0.0576</td>
<td>0.3524</td>
<td>0.6854</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7866</td>
</tr>
<tr>
<td>c_{ah}</td>
<td>0.1787</td>
<td>0.6627</td>
<td>0.3549</td>
<td>0.1478</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0582</td>
</tr>
<tr>
<td>c_{cas}</td>
<td>0.2899</td>
<td>0.077</td>
<td>0.2477</td>
<td>1.3469</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1441</td>
</tr>
</tbody>
</table>

B.4 Profil P

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
<th>a_3</th>
<th>b_3</th>
<th>a_4</th>
<th>b_4</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{ah}</td>
<td>-0.635</td>
<td>1.124</td>
<td>0.5023</td>
<td>0.2108</td>
<td>2.9317</td>
<td>5.1175</td>
<td>-</td>
<td>-</td>
<td>0.1137</td>
</tr>
<tr>
<td>c_{ch}</td>
<td>0.7246</td>
<td>0.2941</td>
<td>1.2044</td>
<td>1.4471</td>
<td>-0.7696</td>
<td>0.6536</td>
<td>-</td>
<td>-</td>
<td>0.923</td>
</tr>
<tr>
<td>c_{ah}</td>
<td>-0.8479</td>
<td>0.8256</td>
<td>0.6475</td>
<td>0.2846</td>
<td>3.0408</td>
<td>4.5571</td>
<td>-</td>
<td>-</td>
<td>0.0667</td>
</tr>
<tr>
<td>c_{cas}</td>
<td>0.1468</td>
<td>0.1182</td>
<td>0.1099</td>
<td>0.1182</td>
<td>0.7833</td>
<td>2.0234</td>
<td>-</td>
<td>-</td>
<td>0.0116</td>
</tr>
</tbody>
</table>

B.5 Profil B8

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
<th>a_3</th>
<th>b_3</th>
<th>a_4</th>
<th>b_4</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{ah}</td>
<td>0.1731</td>
<td>0.1839</td>
<td>0.3552</td>
<td>0.184</td>
<td>1.4372</td>
<td>7.1377</td>
<td>-</td>
<td>-</td>
<td>0.8707</td>
</tr>
<tr>
<td>c_{ch}</td>
<td>0.5101</td>
<td>0.7634</td>
<td>0.3711</td>
<td>0.0902</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.8456</td>
</tr>
<tr>
<td>c_{ah}</td>
<td>0.2349</td>
<td>2.1435</td>
<td>0.3071</td>
<td>0.0400</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0825</td>
</tr>
<tr>
<td>c_{cas}</td>
<td>0.0735</td>
<td>0.4267</td>
<td>0.3486</td>
<td>0.0149</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0663</td>
</tr>
</tbody>
</table>
B.6 Profil R

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{hh})</td>
<td>0.5541</td>
<td>0.0856</td>
<td>-1.0138</td>
<td>0.00</td>
<td>0.4683</td>
<td>0.5589</td>
<td>0.5511</td>
<td>0.0838</td>
<td>0.0740</td>
</tr>
<tr>
<td>(c_{hh})</td>
<td>0.3358</td>
<td>0.2032</td>
<td>-0.4009</td>
<td>0.0013</td>
<td>0.4894</td>
<td>0.7615</td>
<td>0.4023</td>
<td>0.1438</td>
<td>0.0992</td>
</tr>
<tr>
<td>(c_{ab})</td>
<td>1.4561</td>
<td>2.9813</td>
<td>0.5133</td>
<td>0.0143</td>
<td>-0.7782</td>
<td>0.6507</td>
<td>-</td>
<td>-</td>
<td>0.0198</td>
</tr>
<tr>
<td>(c_{c})</td>
<td>0.8283</td>
<td>1.2914</td>
<td>0.4864</td>
<td>0.0155</td>
<td>-0.471</td>
<td>0.2552</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
</tr>
</tbody>
</table>

B.7 Profil C

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{hh})</td>
<td>0.3036</td>
<td>0.1015</td>
<td>-0.2275</td>
<td>0.0117</td>
<td>0.8377</td>
<td>1.7082</td>
<td>0.20346</td>
<td>1.3915</td>
<td>0.2546</td>
</tr>
<tr>
<td>(c_{hh})</td>
<td>0.2533</td>
<td>1.2107</td>
<td>0.1192</td>
<td>0.00</td>
<td>0.6454</td>
<td>1.3362</td>
<td>0.1975</td>
<td>1.1823</td>
<td>16.0982</td>
</tr>
<tr>
<td>(c_{ab})</td>
<td>0.6275</td>
<td>0.0542</td>
<td>0.6039</td>
<td>0.0542</td>
<td>-0.3815</td>
<td>0.1478</td>
<td>-0.3796</td>
<td>0.1478</td>
<td>0.3394</td>
</tr>
<tr>
<td>(c_{c})</td>
<td>0.1042</td>
<td>0.8001</td>
<td>0.7815</td>
<td>0.0003</td>
<td>-0.0619</td>
<td>0.6157</td>
<td>-0.3543</td>
<td>0.2103</td>
<td>0.2599</td>
</tr>
</tbody>
</table>

B.8 Profil TC

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{hh})</td>
<td>0.9426</td>
<td>0.5698</td>
<td>-1.989</td>
<td>0.3572</td>
<td>1.1888</td>
<td>0.5697</td>
<td>1.0766</td>
<td>0.5698</td>
<td>14.8924</td>
</tr>
<tr>
<td>(c_{c})</td>
<td>1.1567</td>
<td>0.0482</td>
<td>1.0571</td>
<td>0.0482</td>
<td>-0.9162</td>
<td>0.2350</td>
<td>-1.0287</td>
<td>0.2358</td>
<td>4.69</td>
</tr>
</tbody>
</table>

B.9 Profil C

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(a_3)</th>
<th>(b_3)</th>
<th>(a_4)</th>
<th>(b_4)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{hh})</td>
<td>-1.1921</td>
<td>1.5108</td>
<td>0.3191</td>
<td>0.6253</td>
<td>5.5131</td>
<td>5.7009</td>
<td>0.5402</td>
<td>0.0174</td>
<td>0.0167</td>
</tr>
<tr>
<td>(c_{hh})</td>
<td>0.4234</td>
<td>1.1978</td>
<td>0.5451</td>
<td>0.0064</td>
<td>0.3243</td>
<td>1.1519</td>
<td>0.211</td>
<td>1.0722</td>
<td>2.2799</td>
</tr>
<tr>
<td>(c_{ab})</td>
<td>0.0554</td>
<td>0.5384</td>
<td>0.6629</td>
<td>0.0038</td>
<td>0.3545</td>
<td>0.8062</td>
<td>0.0418</td>
<td>0.5707</td>
<td>0.0224</td>
</tr>
<tr>
<td>(c_{c})</td>
<td>0.0907</td>
<td>0.541</td>
<td>0.7646</td>
<td>0.00</td>
<td>0.1263</td>
<td>0.5328</td>
<td>0.027</td>
<td>0.5334</td>
<td>1.074</td>
</tr>
</tbody>
</table>
Anhang C

Vergleich von experimentell und numerisch ermittelten Flatterderivativa anhand der resultierenden kritischen Windgeschwindigkeit bei variablem Frequenzverhältnis ε
Abbildung C.1: Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis \(\varepsilon \) für den Querschnitt der Brücke über den großen Belt.

Abbildung C.2: Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis \(\varepsilon \) für den Querschnitt S.
Abbildung C.3: Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis \(\varepsilon \) für den Querschnitt M

Abbildung C.4: Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis \(\varepsilon \) für den Querschnitt P
Abbildung C.5: Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis \(\varepsilon \) für den Rechteckquerschnitt \(H:B = 1:8 \)

Abbildung C.6: Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis \(\varepsilon \) für den Querschnitt C
Abbildung C.7: Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den Querschnitt der Tacoma Brücke

Abbildung C.8: Vergleich der kritischen Windgeschwindigkeiten in Abhängigkeit vom Frequenzverhältnis ε für den offenen Querschnitt G (Datensatz 2 (Anhang F))
Anhang D

Das Prediktor-Korrektor-Verfahren in Anwendung auf die Zeitbereichsintegration

Als numerisches Verfahren zur zeitabhängigen Lösung der Bewegungsgleichungen wird das Prediktor-Korrektor-Verfahren gewählt.

Die Differentialgleichungen

\[mh\ddot{h} + Ch\dot{h} + K_h h = \frac{\rho h}{m} \frac{dc_L(\alpha)}{dx} \int_{-\infty}^{s} \left(\Phi_{Lh}(s-\tau)\dot{\alpha} + \Phi_{Lh}(s-\tau)\frac{\dot{h}(\tau)}{b} \right) d\tau \quad (D.1) \]

\[\theta\ddot{\alpha} + C_\theta \dot{\alpha} + K_\theta \alpha = \frac{1}{2} m_a^2 b \frac{dc_{M}(\alpha)}{dx} \int_{-\infty}^{s} \left(\Phi_{Mh}(s-\tau)\dot{\alpha} + \Phi_{Mh}(s-\tau)\frac{\dot{h}(\tau)}{b} \right) d\tau \quad (D.2) \]

beschreiben die Bewegung des Brückenhauptträgers im Flatterfall. Durch partielle Integration

\[\int g(x)f'(x)dx = g(x)f(x) - \int g'f(x)dx \quad (D.3) \]

können die zweifachen Ableitungen \(\ddot{h} \) auf der rechten Seite der Gleichungen durch einfache Ableitungen ersetzt werden.

Um das Prediktor-Korrektor-Verfahren anwenden zu können, muss das System von Differentialgleichungen zweiter Ordnung auf ein Differentialgleichungssystem erster Ordnung reduziert werden. Dies geschieht durch Substitution der Ableitungen erster
Ordnung durch neue Variablen

\[u_h = \dot{h} \quad (D.4) \]
\[u_\alpha = \dot{\alpha} \quad (D.5) \]

Damit erhält man ein Gleichungssystem erster Ordnung mit vier Gleichungen und vier Unbekannten. Die Zeit \(t \) ist die Laufvariable.

\[\dot{h} = f(t, h, u_h, \alpha, u_\alpha) = u_h \quad (D.6) \]

\[\dot{u}_h = f(t, h, u_h, \alpha, u_\alpha) = \frac{1}{m} \left[-d_h u_h - k_h h \right. \\
+ \left. \frac{\partial}{\partial \alpha} \frac{d c_{\alpha}(\alpha)}{d\alpha} \right]_\alpha=0 \int_{-\infty}^s \left(\Phi_L h(s-\tau) \dot{\alpha} + \Phi_L h(s-\tau) \frac{\dot{u}_h(\tau)}{b} \right) d\tau \]

\[\dot{\alpha} = f(t, h, u_h, \alpha, u_\alpha) = u_\alpha \quad (D.8) \]

\[\dot{u}_\alpha = f(t, h, u_h, \alpha, u_\alpha) = \frac{1}{m} \left[-d_\alpha u_\alpha - k_\alpha \alpha \right. \\
+ \left. \frac{1}{2} \rho b^2 \int_{-\infty}^s \left(\Phi_M h(s-\tau) \dot{\alpha} + \Phi_M h(s-\tau) \frac{\dot{u}_h(\tau)}{b} \right) d\tau \right] \]

Durch partielle Integration können die zweifachen Ableitungen \(\dot{u}_h \) auf der rechten Seite der Gleichungen durch einfache Ableitungen ersetzt werden.

Die Gleichungen sind abhängig voneinander, es muss iteriert werden.

\[\dot{u}_h = f(t, h, u_h, \alpha, u_\alpha) = \frac{1}{m} (-d_h u_h - k_h h + L_{pre}) \quad (D.10) \]
\[\dot{u}_\alpha = f(t, h, u_h, \alpha, u_\alpha) = \frac{1}{m} (-d_\alpha u_\alpha - k_\alpha \alpha + M_{pre}) \quad (D.11) \]
Es ergeben sich folgende Adam'schen Prediktor-Korrektor-Formeln:

Prediktor für h:

\[
h(i + 1) = h(i) + \frac{1}{24}[55u_h(i) - 59u_h(i - 1) + 37u_h(i - 2) - 9u_h(i - 3)]
\] (D.12)

Prediktor für α:

\[
\alpha(i + 1) = \alpha(i) + \frac{1}{24}[55\dot{u}_h(i) - 59\dot{u}_h(i - 1) + 37\dot{u}_h(i - 2) - 9\dot{u}_h(i - 3)]
\] (D.13)

Prediktor für u_h:

\[
u_h(i + 1) = u_h(i) + \frac{1}{24}[55\ddot{u}_h(i) - 59\ddot{u}_h(i - 1) + 37\ddot{u}_h(i - 2) - 9\ddot{u}_h(i - 3)]
\] (D.14)

Prediktor für u_α:

\[
u_\alpha(i + 1) = u_\alpha(i) + \frac{1}{24}[55\ddot{u}_\alpha(i) - 59\ddot{u}_\alpha(i - 1) + 37\ddot{u}_\alpha(i - 2) - 9\ddot{u}_\alpha(i - 3)]
\] (D.15)

Korrektor für h:

\[
h(i + 1) = h(i) + \frac{1}{24}[10u_h(i + 1) + 19u_h(i) - 5u_h(i - 1) + u_h(i - 2)]
\] (D.16)

Korrektor für α:

\[
\alpha(i + 1) = \alpha(i) + \frac{1}{24}[10\dot{u}_h(i + 1) + 19\dot{u}_h(i) - 5\dot{u}_h(i - 1) + \dot{u}_h(i - 2)]
\] (D.17)

Korrektor für u_h:

\[
u_h(i + 1) = u_h(i) + \frac{1}{24}[9\ddot{u}_h(i + 1) + 19\ddot{u}_h(i) - 5\ddot{u}_h(i - 1) + \ddot{u}_h(i - 2)]
\] (D.18)

Korrektor für u_α:

\[
u_\alpha(i + 1) = u_\alpha(i) + \frac{1}{24}[9\ddot{u}_\alpha(i + 1) + 19\ddot{u}_\alpha(i) - 5\ddot{u}_\alpha(i - 1) + \ddot{u}_\alpha(i - 2)]
\] (D.19)
Anhang E

Flatterderivativa nach Theodorsen in numerischer Form

<table>
<thead>
<tr>
<th>k</th>
<th>(c_{d_h})</th>
<th>(c_{d_k})</th>
<th>(c_{l_{d_h}})</th>
<th>(c_{l_{d_k}})</th>
<th>(c_{m_{d_h}})</th>
<th>(c_{m_{d_k}})</th>
<th>(c_{m_{l_{d_h}}})</th>
<th>(c_{m_{l_{d_k}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-2.446</td>
<td>-16.666</td>
<td>1.723</td>
<td>8.319</td>
<td>-168.1</td>
<td>16.14</td>
<td>84.18</td>
<td>-18.07</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.8862</td>
<td>-7.276</td>
<td>0.943</td>
<td>9.688</td>
<td>-57.32</td>
<td>0.7934</td>
<td>18.79</td>
<td>-5.397</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.1956</td>
<td>-4.433</td>
<td>0.5977</td>
<td>2.217</td>
<td>-15.37</td>
<td>-1.568</td>
<td>7.812</td>
<td>-2.551</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1751</td>
<td>-3.125</td>
<td>0.4125</td>
<td>1.562</td>
<td>-8.225</td>
<td>-2.0</td>
<td>4.237</td>
<td>-1.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3972</td>
<td>-2.392</td>
<td>0.3014</td>
<td>1.196</td>
<td>-5.085</td>
<td>-1.99</td>
<td>2.066</td>
<td>-1.004</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5407</td>
<td>-1.929</td>
<td>0.2296</td>
<td>0.9647</td>
<td>-3.445</td>
<td>-1.866</td>
<td>1.848</td>
<td>-0.7337</td>
</tr>
<tr>
<td>0.7</td>
<td>0.6388</td>
<td>-1.614</td>
<td>0.1896</td>
<td>0.8068</td>
<td>-2.486</td>
<td>-1.719</td>
<td>1.368</td>
<td>-0.5089</td>
</tr>
<tr>
<td>0.8</td>
<td>0.7081</td>
<td>-1.385</td>
<td>0.1436</td>
<td>0.6921</td>
<td>-1.877</td>
<td>-1.579</td>
<td>1.064</td>
<td>-0.4091</td>
</tr>
<tr>
<td>0.9</td>
<td>0.7663</td>
<td>-1.213</td>
<td>0.1198</td>
<td>0.6066</td>
<td>-1.468</td>
<td>-1.451</td>
<td>0.8099</td>
<td>-0.3854</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7995</td>
<td>-1.079</td>
<td>0.1003</td>
<td>0.5394</td>
<td>-1.179</td>
<td>-1.339</td>
<td>0.7146</td>
<td>-0.3306</td>
</tr>
</tbody>
</table>
Anhang F

Struktureigenschaften von Brücken und Experimenten

Folgende Datensätze wurden für die Bestimmung der kritischen Flattergeschwindigkeit verwendet:

Datensatz 1: Tacoma Narrows Systemeigenschaften nach Starossek [101]
Datensatz 2: Systemeigenschaften eines Bauzustandes der Brücke über den großen Belt nach Walther [119]
Datensatz 3: Systemeigenschaften Kim [55]
Datensatz 4: Systemeigenschaften des Referenzversuches
Datensatz 5: Systemeigenschaften des Hauptfeldes der Brücke über den Großen Belt im Ausbauzustand [108]
Datensatz 7: [50], Case 3
Datensatz 8: Gibraltar

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Datensatz 1</th>
<th>Datensatz 2</th>
<th>Datensatz 3</th>
<th>Datensatz 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>b [m]</td>
<td>5.95</td>
<td>15.5</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>ω₁ [1/s]</td>
<td>0.84</td>
<td>0.62</td>
<td>24.7</td>
<td>16.35</td>
</tr>
<tr>
<td>ω₂ [1/s]</td>
<td>1.11</td>
<td>1.17</td>
<td>53.6</td>
<td>28.9</td>
</tr>
<tr>
<td>ε</td>
<td>1.32</td>
<td>1.88</td>
<td>2.17</td>
<td>1.74</td>
</tr>
<tr>
<td>μ₀</td>
<td>61</td>
<td>19.7</td>
<td>68.2</td>
<td>77.0</td>
</tr>
<tr>
<td>r</td>
<td>0.77</td>
<td>0.71</td>
<td>0.63</td>
<td>0.96</td>
</tr>
<tr>
<td>m [kg/m]</td>
<td>8500</td>
<td>17800</td>
<td>6.3</td>
<td>6.54</td>
</tr>
<tr>
<td>θ [kg m²/m]</td>
<td>177.730</td>
<td>2173.000</td>
<td>53.1</td>
<td>0.1359</td>
</tr>
<tr>
<td>ζ₈</td>
<td>0</td>
<td>0</td>
<td>0.0027</td>
<td>0.008</td>
</tr>
<tr>
<td>ζ₉</td>
<td>0</td>
<td>0</td>
<td>0.0013</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Abweichend von Starossek gibt Larsen in [58] die folgenden Werte an, welche er auf eine Veröffentlichung von Farquharson [32] zurückführt:

\[m = 4,25 \times 10^4 \text{ [kg/m]} \ ; \ I = 177.730 \text{ [kgm}^2/\text{m]} \ ; \]
\[\omega_h = 0,81 \text{ [1/s]} \ ; \ \omega_\alpha = 1,26 \text{ [1/s]} \ ; \ \xi_h = \xi_\alpha = 0,005 \]

Die unterschiedliche Masse hat einen geringen Einfluss auf die Flatterstabilität der Tacoma Narrows Brücke, da das Stabilitätssversagen der Brücke durch reines Torsionsflattern hervorgerufen wurde.
Anhang G

Umrechnung von komplexer in reelle Darstellung

Die Umrechnungsfaktoren für die ursprüngliche (Gl. 3.27 und 3.28) und für die heutzutage gebräuchliche Scanlan-Notation (Gl. 3.30, 3.31 und 3.32) sind im Folgenden aufgeführt.

<table>
<thead>
<tr>
<th>Starossek</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>Scanlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateralschwingung</td>
<td>(c_{w,w}^f)</td>
<td>(-\frac{7}{8})</td>
<td>(P_4^w)</td>
</tr>
<tr>
<td></td>
<td>(c_{w,w}^s)</td>
<td>(-\frac{7}{8})</td>
<td>(P_7^w)</td>
</tr>
<tr>
<td></td>
<td>(c_{w,h}^f)</td>
<td>(-\frac{7}{8})</td>
<td>(P_7^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{w,h}^s)</td>
<td>(-\frac{7}{8})</td>
<td>(P_7^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{w,a}^f)</td>
<td>(-\frac{7}{8})</td>
<td>(P_3^a)</td>
</tr>
<tr>
<td></td>
<td>(c_{w,a}^s)</td>
<td>(-\frac{7}{8})</td>
<td>(P_3^h)</td>
</tr>
<tr>
<td>Biegeschwingung</td>
<td>(c_{h,h}^f)</td>
<td>(-\frac{4}{8})</td>
<td>(H_4^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{h,h}^s)</td>
<td>(-\frac{4}{8})</td>
<td>(H_1^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{h,a}^f)</td>
<td>(-\frac{4}{8})</td>
<td>(H_3^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{h,a}^s)</td>
<td>(-\frac{4}{8})</td>
<td>(H_3^a)</td>
</tr>
<tr>
<td></td>
<td>(c_{h,w}^f)</td>
<td>(-\frac{4}{8})</td>
<td>(H_6^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{h,w}^s)</td>
<td>(-\frac{4}{8})</td>
<td>(H_6^w)</td>
</tr>
<tr>
<td>Torsionsschwingung</td>
<td>(c_{a,h}^f)</td>
<td>(-\frac{4}{8})</td>
<td>(A_4^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{a,h}^s)</td>
<td>(-\frac{4}{8})</td>
<td>(A_1^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{a,a}^f)</td>
<td>(-\frac{4}{8})</td>
<td>(A_3^a)</td>
</tr>
<tr>
<td></td>
<td>(c_{a,a}^s)</td>
<td>(-\frac{4}{8})</td>
<td>(A_3^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{a,w}^f)</td>
<td>(-\frac{4}{8})</td>
<td>(A_6^h)</td>
</tr>
<tr>
<td></td>
<td>(c_{a,w}^s)</td>
<td>(-\frac{4}{8})</td>
<td>(A_6^w)</td>
</tr>
</tbody>
</table>
In Abschnitt 3.4 wurde die Formulierung der Bewegungsgleichungen nach Scanlan beschrieben. Viele Ergebnisse für Flatterderivativa wurden in dieser Notation veröffentlicht. Die Flatterderivativa in der Notation von Scanlan müssen in die hier verwendete umgerechnet werden.

Umrechnungsformel:

Alte Formulierung, \(c_{ij} = f_1(c_{ij})H^*_m(c_{ij}) \)

Neue Formulierung, \(c_{ij} = f_2(c_{ij})H^*_m(c_{ij}) \) \hspace{1cm} (G.1)

mit \(i, j = h, \alpha \) und \(m = 1, \ldots, 4 \)
Lebenslauf von Lydia Thiesemann (geb. Moritz)

Zur Person: geb. am 17.03.1967 in Hannover
verheiratet mit Uwe Thiesemann

Schulausbildung:
1973-1977 Grundschule Mühlenberg, Hannover
1977-1986 Humboldtschule Hannover (Abschluss Abitur)

Studium:
1987-1993 Studium des Bauingenieurwesens an der Universität Hannover

Berufsweg:
1993-1994 Institut für Strömungsmechanik und Elektronisches Rechnen
im Bauwesen, Universität Hannover
1994-1995 Ingenieurgesellschaft D. Moritz mbH
1995-1999 Arup GmbH, Berlin
1999-2003 Arbeitsbereich "Baustatik und Stahlbau"
Technische Universität Hamburg-Harburg
2004-2005 CBP Tragwerksplanung GmbH, Hamburg
seit 2006 WTM Engineers GmbH, Hamburg