Title: MODULAR OVERHEAD BIN
(57) Abstract: An overhead bin (10) for an aircraft comprises a base unit (12) that is designed to fasten the overhead bin (10) to a retaining structure of the aircraft, and a mounting unit (14) that is connected to the base unit (12). By way of the mounting unit (14) a stowage space (28) of the overhead bin (10) can be accessed. The base unit (12) provides a first stowage space region (20), and the mounting unit (14) provides a second stowage space region (26) that together with the first stowage space region (20) forms the stowage space (28) of the overhead bin (10).
Modular overhead bin

REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date of German Patent Application No. 10 2012 009 632.1 filed 14 May 2012 and of United States Provisional Patent Application No. 61/646,432 filed 14 May 2012, the disclosure of which applications is hereby incorporated herein by reference.

TECHNICAL FIELD

The invention relates to an overhead bin for an aircraft, to an aircraft, to an installation system for assembling an overhead bin, and to a method for installing an overhead bin in an aircraft.

BACKGROUND TO THE INVENTION

Usually, in passenger aircraft overhead bins are provided in which passengers can stow their cabin baggage during the flight, which also may be used by the cabin crew for stowing further objects, for example blankets, headrests or child seats.

There are many variants of overhead bins, for example so called fixed bins in which the hinged lid can be opened upwards and in which the bottom of the bin is formed by a wall of the bin, or so called movable bins in which the hinged lid can be opened downwards, thus forming a part of the bottom of the bin.

Different installation variants of overhead bins normally comprise different interfaces to the primary structure of the aircraft. The same applies to the interfaces for the passenger service unit or personal service unit, PSU in the respective variants. As a rule, a conversion to another installation variant is very expensive. For example, the cabin panels must be deinstalled, and new retainers must be installed on the primary structure at different positions.
SUMMARY OF THE INVENTION

It is an object of the invention to simplify installation and conversion of overhead bins in the aircraft.

This object is met by the subject matter of the independent claims. Further embodiments of the invention are evident from the dependent claims and from the following description.

One aspect of the invention relates to an overhead bin or hatrack for an aircraft, in particular an airplane. An overhead bin may be a baggage rack that may be suspended over passenger seats. Thus, when a passenger is standing, said baggage rack may be situated at head height or below.

According to one embodiment of the invention, the overhead bin comprises a base unit that is designed to fasten the overhead bin to a retaining structure of the aircraft, and a mounting unit that is connected to the base unit. By way of the mounting unit a stowage space of the overhead bin can be accessed, for example by way of a hinged lid. The base unit provides a first stowage space region, and the mounting unit provides a second stowage space region that together with the first stowage space region forms the stowage space of the overhead bin.

In other words, the overhead bin may be considered to be a modular overhead bin that comprises a base unit as a base module or standard module, and that comprises a mounting unit as a variable module. Different variants of the mounting unit can be provided. For example, for the same base unit various differently-designed mounting units may be provided, for example a fixed bin or a moveable bin. In this manner it is possible to select the installation variant after installation of the base unit. System
installations and tests may be carried out beforehand, independently of the mounting unit.

It is understood that both the base unit and the mounting unit provide a part of the volume of the stowage space of the overhead bin, both components therefore have a void or hollow space that comprises the respective stowage space region.

Furthermore, the standard module makes it possible to use identical retainers and positions on the retaining structure or primary structure of the aircraft. In this manner the primary structure of the airplane may be produced in advance, irrespective of the installation variant selected at a later stage.

According to one embodiment of the invention, the mounting unit is connected to the aircraft only indirectly by way of the base unit. In other words, by detaching the mounting unit from the base unit, said mounting unit may be completely separated from the aircraft. In this manner it is possible to exchange the mounting unit, thus altering the installation variant of the overhead bin, without this requiring major modifications in the aircraft. For example, the mounting unit is screwed to the base unit.

According to one embodiment of the invention, the base unit comprises sidewalls that define the first stowage space region. The sidewalls of the base unit may form a box that encloses the first stowage space region. This box may be closed on one side by a rear wall of the base unit.

According to one embodiment of the invention, the mounting unit comprises sidewalls that define the second stowage space region. Likewise, the sidewalls of the mounting unit may form a box that encloses the second stowage space region. This
box may be closed on one side by a hinged cover or hinged lid. When the two boxes of the base unit and of the mounting unit are placed one on the other, they form the stowage space of the overhead bin, which stowage space may be closed on the rear by a wall of the base unit, and on the front by the hinged cover.

According to one embodiment of the invention, the base unit and the mounting unit comprise parallel sidewalls that are interconnected by way of face surfaces. These sidewalls may form a closure, without any opening, of the overhead bin in the direction of the longitudinal axis of the aircraft.

According to one embodiment of the invention, the base unit comprises a first opening, and the mounting unit comprises a second opening that is complementary to the first opening of the base unit. These openings may be formed by face surfaces of the sidewalls of the base unit and of the mounting unit. The base unit and the mounting unit may be joined or assembled by way of the first opening and the second opening.

Furthermore, it is possible to equip the base unit with further mounting components, for example a passenger service unit and an associated supply unit. To this effect the base unit may comprise corresponding receiving devices for these mounting components. The base unit may concurrently be used to receive a passenger service channel (PSC), and a passenger service unit by way of the sidewalls of the base unit.

According to one embodiment of the invention, the overhead bin comprises a passenger service unit that is designed to supply light and/or air to a passenger located underneath the overhead bin, wherein the base unit comprises a receiving device for the passenger service unit.
The receiving devices in the base unit for the passenger service units and also the interfaces are located in the base unit in the same position. Preconfiguration of the different variants of passenger service units is possible independently of the variant of the mounting unit.

According to one embodiment of the invention, the receiving device comprises a channel of uniform cross section, in which channel passenger service units may be arranged at any desired spacing. In this manner the passenger service units may be preconfigured, depending on the seat pitch.

According to one embodiment of the invention, the overhead bin comprises a supply unit with an interface for connection to a passenger service unit, wherein the base unit may comprise a receiving device for the supply unit. Supplying the passenger service units may be ensured by way of a central supply module which is, for example, arranged between the frame elements of an airplane. A central interface of the supply unit for several media flows (for example air, current and/or information) may support easy exchangeability and installation. Separate pretesting of the interfaces is already possible without the mounting unit. Moving the installation of these systems backward in time may furthermore reduce the time required for installation in the cabin.

By means of a standardized interface, different variants of passenger service units may be connected. Irrespective of the configuration of the individual positions of the passenger service units, only one interface to the supply module needs to be operated. Cables that are overlong (due to positioning) for a normal connection of the individual components may be omitted. The interfaces for various installation variants may be identical and may be situated at identical positions. In this manner easy expandability and exchangeability may be achieved.
According to one embodiment of the invention, the mounting unit comprises a hinged cover or a hinged lid by means of which the stowage space of the overhead bin may be accessed. For example, a person in the cabin of the aircraft may open the hinged cover in order to stow an item in the stowage space, and may subsequently close the hinged cover. As a rule, the hinged cover may comprise a pivot axis that extends parallel to a longitudinal direction of the aircraft.

According to one embodiment of the invention, the hinged cover is designed in such a manner that during opening it hinges upwards, wherein at least part of the bottom wall of the stowage space of the overhead bin may be formed by a bottom area of the mounting unit. The mounting unit may thus supplement the base unit so that it becomes a fixed bin.

According to one embodiment of the invention, the hinged cover is designed in such a manner that during opening it hinges downwards, wherein at least part of the bottom area of the stowage space may be formed by the hinged cover. The mounting unit may thus supplement the base unit so that it becomes a movable bin.

A further aspect of the invention relates to an airplane with a passenger cabin in which an overhead bin is incorporated or installed, as described above and below.

A further aspect of the invention relates to an installation system for an aircraft for assembling an overhead bin, as described for example above and below.

According to one embodiment of the invention, the installation system comprises a base unit and at least two differently constructed mounting units that are designed to be connected with the base unit to form an overhead bin. By means of the installation
system it is possible, for example, to preinstall several base units in the aircraft without having to know which installation variants of overhead bins will ultimately be installed. At a later point in time the base units may then be supplemented with the desired installation variant.

According to one embodiment of the invention, the installation system comprises a passenger service unit for installation in a receiving device of the base unit and/or a supply unit with an interface for connection to the passenger service unit. The installation system may comprise further mounting components that may be preinstalled together with the base unit.

A further aspect of the invention relates to a method for installing an overhead bin in an aircraft. It is understood that features of the overhead bin and of the installation system may be features of the method and vice versa.

According to one embodiment of the invention, the method comprises the step of: fastening a base unit to a retaining structure of the aircraft, wherein the base unit provides a first stowage space region of the stowage space of the overhead bin. In a first step the base unit may be preinstalled in the aircraft independently of the mounting unit. Furthermore, various panels, for example a sidewall panel and/or a cover for an air inlet, and a standard unit, for example the supply unit, may be preinstalled. Moreover, the base unit with further mounting components, for example an air hose and/or cabin illumination, may be preinstalled on the primary structure.

Overall, the method makes it possible to install overhead bins in a standardized manner and to later adapt the variable mounting components.
According to one embodiment of the invention, the method comprises the step of: connecting a mounting unit to the base unit, wherein the mounting unit provides a second stowage space region that with the first stowage space region forms the stowage space of the overhead bin, and wherein by way of the mounting unit the stowage space of the overhead bin may be accessed. In a second step, which may be carried out separately in time from the first step, it is possible to install only the mounting units and the passenger service units, for example in accordance to a customer's request.

According to one embodiment of the invention, the method comprises the step of: exchanging the mounting unit with a differently designed mounting unit. In this manner the expense for reconfiguring different installation variants may be reduced.

Below, exemplary embodiments of the invention are described in detail with reference to the enclosed figures.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1A shows a three-dimensional view of an overhead bin according to an embodiment of the invention.

Fig. 1B shows a three-dimensional view of an overhead bin according to a further embodiment of the invention.

Fig. 2 shows a view of a cabin space according to one embodiment of the invention.

Fig. 3 shows a flow chart for a method for installing an overhead bin according to an embodiment of the invention.
Fig. 4A shows a three-dimensional view of a cabin space according to an embodiment of the invention.

Fig. 4B shows the cabin space of Fig. 4A from a different angle of view.

Fig. 5A shows a three-dimensional view of a cabin space according to an embodiment of the invention.

Fig. 5B shows the cabin space of Fig. 5A from a different angle of view.

Fig. 6 shows a three-dimensional view of the rear of a base unit according to an embodiment of the invention.

Fig. 7A shows a three-dimensional view of a supply unit and a passenger service unit according to an embodiment of the invention.

Fig. 7B shows the supply unit and the passenger service unit from Fig. 7A in a connected state.

Fig. 8 shows an aircraft according to an embodiment of the invention.

Basically, identical or similar components in different figures have the same reference characters.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Fig. 1A shows an overhead bin 10 that comprises a base unit 12 and a mounting unit 14. The overhead bin 10 comprises a modular design with the two modules 12, 14.
The base unit 12, which may be fastened to a retaining structure of an airplane, comprises several sidewalls 16, 18 that enclose a stowage space region 20 in a box-like manner. Furthermore, the base unit 12 comprises a rear wall 22 that is curved in such a manner that the base unit may be placed against the circular frame elements of an airplane. In the installed state the sidewalls 16 are situated so as to be perpendicular on a longitudinal axis of the aircraft, and the rear wall 22 extends parallel to this longitudinal direction.

The mounting unit 14 also comprises sidewalls 24 that enclose a stowage space region 26 in a box-like manner. When the mounting unit 14 is connected to the base unit, the stowage space 28 of the bin 10 is formed from the two stowage space regions 20, 26.

At its front the mounting unit 14 comprises a hinged lid 30 by way of which the stowage space 28 can be accessed. In the installed state the sidewalls 24 are situated so as to be perpendicular on a longitudinal axis of the airplane, and the hinged lid 30 extends parallel to this longitudinal direction. The hinged lid 30 may be hinged on a pivot axis 32 parallel to the longitudinal direction and may be opened upwards. In this arrangement the pivot axis 32 is affixed to an upper section of the mounting unit 14.

Above the pivot axis 32 the mounting unit 14 also comprises a faceplate-like wall 34 that closes off the stowage space 28 towards the outside.

For connecting the mounting unit 14 to the base unit 12 the walls 24, 34 of the mounting unit and the walls 16, 18 of the base unit 12 comprise steps 36 by way of which the two units 12, 14 are insertable one into the other so that a planar outside
contour of the bin 10 results. In this manner the parallel sidewalls 16, 24 may be interconnected by their face surfaces 38 so that a continuous sidewall of the bin 10 results.

Due to the face surfaces 38, in the base unit 12 an opening 40 is formed onto which a corresponding complementary opening 42 of the mounting unit 14 may be placed.

After inserting one into the other, the two units 12, 14 may, for example, be screwed together.

In the installation variant shown in Fig. 1A the mounting unit 14 forms a bin 10 in the form of a fixed bin in which the hinged lid 30 may be opened upwards, and in which a bottom wall 44 of the mounting unit 14 forms a section of the bottom of the bin 10.

Fig. 1B shows a further embodiment of an overhead bin 10' that comprises the (same) base unit 12 and an alternative mounting unit 14'. The mounting unit 14' comprises two parallel sidewalls 24 and a hinged lid 30' that may be hinged on a pivot axis 32' in the lower region of the mounting unit 14'. In the upper section the mounting unit 14' comprises a sidewall 34' that closes off the stowage space 28 from the surroundings.

In the installation variant shown in Fig. 1B, the mounting unit 14' forms a bin 10' in the form of a movable bin in which the hinged lid 30' may be opened downwards and in which the hinged lid 30' of the mounting unit 14' forms a section of the bottom of the bin 10'.
Fig. 2 shows a view of a cabin 50 or of a cabin space 50 in the direction of the longitudinal direction of an aircraft 52. Two overhead bins 10, 10' are fastened in the cabin 50 so that they are symmetrical to the centre axis of the aircraft 52.

The base units 12 of the overhead bins 10, 10' are connected, by way of standard fastening elements 56, for example metal strips, to circular frame elements 54 that enclose the cabin 50. The frame elements 54 form part of a retaining structure or primary structure of the aircraft 52. If the base units 12 are designed so as to be mirror symmetrical, the same type of base unit 12 may be used for the left-hand side and for the right-hand side of the aircraft 52.

The mounting units 14, 14' are only connected indirectly, by way of the base units 12, to the aircraft 52. As shown in Fig. 2, the face surfaces 38 of the sidewalls 16, 24 extend obliquely to a bottom area of the cabin 50. In this arrangement the face surfaces are arranged in such a manner that they extend approximately parallel to the direction of extension of the hinged cover 34, 34' or of the rear wall 22 of the base unit 12.

Further mounting components, possibly pre-installed, may be mounted to the base unit 12, which mounting components include, for example, an air inlet 58 that may be fastened to the sidewall 18 and that is supplied with air by way of a line 60 that extends behind the base unit 12 and its rear wall 22.

The line 60 leads to a passenger service channel 62, arranged laterally behind the respective base unit 10, 10'. In the passenger service channel 62, supply units 64 are arranged that may supply the passenger service units 66 with air, current, and/or data.
Further faceplates may be affixed to the base units 12, such as for example a standard cover 68 with a downwards-facing air inlet, or cover panels 70 that may be tailored to the passenger service units 66.

For fastening a passenger service unit 66, the base unit 12 comprises a receiving device 72, formed from a channel 62 of uniform cross section.

Furthermore, Fig. 2 shows sidewall panels 74 that form part of the wall of the cabin 50. The sidewall panels 74 extend essentially parallel to the frame elements 54. An upper section 76 of a sidewall panel 74 may project from the frame elements 54 and may form part of the lining of the base unit 12 in the region of the passenger service channel 62.

Fig. 3 shows a flow chart for a method for installing one or several overhead bins 10, 10' in the aircraft 52.

In a step S10 a base unit 12 is fastened to the retaining structure 54 of the aircraft 52. For example, the base unit is screwed to the frame elements 54 by way of the fastening elements 56.

In a step S12 the supply unit 64 and the passenger service unit 66 are fastened to the base unit and are interconnected, for example by way of a standard interface. Furthermore, in this step further covering elements or panels 70 may be attached to the base unit, which covering elements or panels 70 may, for example, be fastened by way of snap connections. Likewise, the sidewall panels 74 may be attached.

In a step S14 a mounting unit 14, 14' is connected to the base unit 12. The step S12 may be carried out so as to be separate in time from step S10, for example when the
cabin 50 is to be adapted to specific customer requests. There is no need for any deinstallation or reconfiguration of the panels 70, 74 or of the supply unit 64 and of the passenger service unit 66. Following step S14, construction of the overhead bin 10, 10' is complete, with the overhead bin 10, 10' being ready for use.

In an optional step S16, for example during reconfiguration of the aircraft 52 or of the cabin 50 or for exchanging a defective mounting unit 14, 14', the mounting unit 14, 14' is removed and replaced with an identically constructed or a differently constructed mounting unit 14, 14'. The panels 70, 74, the supply unit 64, or the passenger service unit 66 need not be removed for this.

Fig. 4A shows a cabin 50 or a cabin space 50 in which a number of overhead bins 10 are arranged consecutively in a longitudinal direction L of the aircraft 52. As shown in Fig. 4A, the base units 12 in longitudinal direction L have the same width as the sidewall panels 74. The same applies to the mounting units 14. However, the mounting units 14 may also be narrower than the base units 12. For example, a base unit 12 may be twice as wide as a mounting unit 14 so that with one base unit an overhead bin 10 comprising two hinged covers 34 may be constructed.

Fig. 4A further shows that each supply unit 64 extends from the bottom by way of a line 80 that extends behind the sidewall panels 74. By way of the line 80 a supply unit 64 may be supplied with air, current, or data.

Fig. 4B shows the cabin space 50 of Fig. 4A from a direction of view as might be taken up by a person in the cabin 50. Fig. 4B shows that each of the overhead bins 10 comprises a channel 72. The channels 72 of two adjacent overhead bins 10 merge. In
this channel the passenger service units 66 may be arranged at a space during installation, which space is matched to the seat pitch of seat rows underneath the overhead bins 10. Between the passenger service units 66, further faceplates or panels may be inserted into the channels 72, which faceplates or panels are matched to the seat pitch of the seat rows and cover the channels 72.

Figs 5A and 5B show a cabin space 50 analogous to that shown in Figs 4A and 4B with overhead bins 10'. Except for the base units 14' the remaining components of the cabin space 50 may be selected, irrespective of the design or of the variant of the base unit 14', identically to those of Fig. 4A and 4B.

Fig. 6 shows the rear of a further embodiment of a base unit 12. As shown in Fig. 6, at the lower end of the base unit 12 a supply unit 64 and a passenger service unit 66' are attached. In this arrangement the passenger service unit 66' is not attached in a channel at the lower end of the base unit 12, but instead in a region between the base unit 12 and the frame elements 54.

Fig. 7A shows a three-dimensional view of a supply unit 64 and of a passenger service unit 66', which both comprise a plug-type connection 82 for a standard interface 84. In this manner it is possible to connect various embodiments of passenger service units 66' to the same supply unit 64 without the latter having to be exchanged.

A passenger service unit 66, 66' may, for example, comprise a reading light 86, a loudspeaker 88, a nozzle 90, an oxygen mask 92 as well as informative signs that light up.
Fig. 7B shows the supply unit 64 and the passenger service unit 66' of Fig. 7A in a connected state in which the plug-type connections 82 are plugged into each other.

Fig. 8 shows an aircraft or airplane 52 in which two parallel rows of overhead bins 10, 10' have been installed in a cabin 50, which rows extend parallel to the longitudinal axis L. The cabin 50 may be a passenger cabin 50 of the airplane 52.

With reference to Figs 1A and 1B the base unit 12 and the mounting units 14, 14' may be considered to be an installation system 90 by means of which rows of overhead bins 10, 10' may be constructed. Likewise, the passenger service units 66, 66', the supply units 64 and the panels 70, 74 are components of this installation system 90.

In addition, it should be pointed out that “comprising” does not exclude other elements or steps, and “a” or “one” does not exclude a plural number. Furthermore, it should be pointed out that features or steps which have been described with reference to one of the above exemplary embodiments may also be used in combination with other features or steps of other exemplary embodiments described above. Reference characters in the claims are not to be interpreted as limitations.
CLAIMS

1. An overhead bin (10, 10') for an aircraft (52), comprising:
 a base unit (12) that is designed to fasten the overhead bin (10, 10') to a
 retaining structure (54) of the aircraft (52);
 a mounting unit (14, 14') that is connected to the base unit (12),
 wherein by way of the mounting unit (14, 14') a stowage space (28) of the
 overhead bin (10, 10') is accessible;
 wherein the base unit (12) provides a first stowage space region (20), and the
 mounting unit (14, 14') provides a second stowage space region (26) that together
 with the first stowage space region (20) forms the stowage space (28) of the
 overhead bin (10, 10').

2. The overhead bin (10, 10') of claim 1,
 wherein the mounting unit (14, 14') is connectable to the aircraft (52) only
 indirectly by way of the base unit (12).

3. The overhead bin (10, 10') of claim 1 or 2,
 wherein the base unit (12) comprises sidewalls (16, 18) that define the first
 stowage space region (20).

4. The overhead bin (10, 10') of any one of the preceding claims,
 wherein the mounting unit (14, 14') comprises sidewalls (24) that define the
 second stowage space region (26).

5. The overhead bin (10, 10') of any one of the preceding claims,
 wherein the base unit (12) and the mounting unit (14, 14') comprise parallel
 sidewalls (16, 24) that are interconnected by way of face surfaces (38).
6. The overhead bin (10, 10') of any one of the preceding claims, wherein the base unit (12) comprises a first opening (40), and the mounting unit (14, 14') comprises a second opening (42) that is complementary to the first opening of the base unit (12);

wherein the base unit (12) and the mounting unit (14, 14') are joined by way of the first opening (40) and the second opening (42).

7. The overhead bin (10, 10') of any one of the preceding claims, further comprising:

a passenger service unit (66) that is designed to supply light and/or air to a passenger seated underneath the overhead bin (10, 10');

wherein the base unit (12) comprises a receiving device (72) for the passenger service unit (66).

8. The overhead bin (10, 10') of claim 7, wherein the receiving device (72) comprises a channel of uniform cross section, in which channel passenger service units (66) are arrangeable at any desired spacing.

9. The overhead bin (10, 10') of any one of the preceding claims, further comprising:

a supply unit (64) with an interface (84) for connection to a passenger service unit (66, 66').

10. The overhead bin (10, 10') of any one of the preceding claims, wherein the mounting unit comprises a hinged cover (30, 30') by means of which the stowage space (28) of the overhead bin (10, 10') is accessible.
11. The overhead bin (10) of claim 10,
 wherein the hinged cover (30) is designed in such a manner that during
 opening it hinges upwards;
 wherein at least part of the bottom area of the stowage space (28) of the
 overhead bin (10) is formed by a bottom wall (44) of the mounting unit (14).

12. The overhead bin (10') of claim 10,
 wherein the hinged cover (30') is designed in such a manner that during
 opening it hinges downwards;
 wherein at least part of the bottom area of the stowage space (28) is formed
 by the hinged cover (30').

13. An airplane (52) with a cabin (50) in which an overhead bin (10, 10') of any
 one of claims 1 to 12 is installed.

14. An installation system (90) for an aircraft (52) for assembling an overhead
 bin (10, 10') of any one of claims 1 to 12, with the installation system (90)
 comprising:
 the base unit (12),
 at least two differently constructed mounting units (14, 14') that are designed
 to be connected with the base unit (12) to form an overhead bin (10, 10').

15. A method for installing an overhead bin (10, 10') in an aircraft (52), the
 method comprising:
 fastening a base unit (12) to a retaining structure (54) of the aircraft (52),
 wherein the base unit (12) provides a first stowage space region (20) of the stowage
 space (28) of the overhead bin (10, 10');
connecting a mounting unit (14, 14') to the base unit (12), wherein the
mounting unit (14, 14') provides a second stowage space region (26) that with the
first stowage space region (20) forms the stowage space (28) of the overhead bin (10,
10'), and wherein by way of the mounting unit (14, 14') the stowage space (28) of the
overhead bin (10, 10') is accessible.
A. CLASSIFICATION OF SUBJECT MATTER

INV. B64D11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B64D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP H09 267800 A (KOMII KOGEI KK) 14 October 1997 (1997-10-14) figure 1</td>
<td>1, 10, 11</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search

8 August 2013

Date of mailing of the international search report

16/08/2013

Authorized officer

Weber, Ingo
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2493760 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012228425 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011051148 A2</td>
</tr>
<tr>
<td>DE 102009014573 A1</td>
<td>30-09-2010</td>
<td>CN 102414082 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102009014573 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2411271 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012012705 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010118913 A1</td>
</tr>
<tr>
<td>JP H09267800 A</td>
<td>14-10-1997</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011253837 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011133702 A1</td>
</tr>
</tbody>
</table>