[148937]
Title: Multicriterial CNN based beam generation for robotic radiosurgery of the prostate
Written by: S. Gerlach and C. F├╝rweger and T. Hofmann and A. Schlaefer
in: Current Directions in Biomedical Engineering may 2020
Volume: 6 Number: 1
on pages: 20200030
Chapter:
Editor:
Publisher: De Gruyter
Series:
Address: Berlin, Boston
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1515/cdbme-2020-0030
URL: https://www.degruyter.com/view/journals/cdbme/6/1/article-20200030.xml
ARXIVID:
PMID:

[doi] [www] [BibTex]

Note:

Abstract: Although robotic radiosurgery offers a flexible arrangement of treatment beams, generating treatment plans is computationally challenging and a time consuming process for the planner. Furthermore, different clinical goals have to be considered during planning and generally different sets of beams correspond to different clinical goals. Typically, candidate beams sampled from a randomized heuristic form the basis for treatment planning. We propose a new approach to generate candidate beams based on deep learning using radiological features as well as the desired constraints. We demonstrate that candidate beams generated for specific clinical goals can improve treatment plan quality. Furthermore, we compare two approaches to include information about constraints in the prediction. Our results show that CNN generated beams can improve treatment plan quality for different clinical goals, increasing coverage from 91.2 to 96.8% for 3,000 candidate beams on average. When including the clinical goal in the training, coverage is improved by 1.1% points

To top