Torben Frey, M.Sc.

Ei├čendorfer Str. 38, Building O, Room 3.018

Telephone +49 40 42878-4124

E-Mail: Torben Frey, M.Sc.


Research

Continuous Polymerization in Modular, Intelligent Reactors Resistant to the Formation of Deposits (KoPPonA 2.0)

The chemical industry is one of the most energy-intensive production sectors in Germany, and its production processes still offer considerable potential for energy savings. While the production of petrochemical raw materials and basic chemicals is already carried out in highly energy-efficient continuous processes, the production of pharmaceuticals, fine and specialty chemicals still generally uses batch processes with low energy efficiency in multi-product plants. As part of the ENPRO Initiative I and II, modular and flexible plant concepts have been and are being developed in order to be able to use the advantages of a continuous production mode for the fabrication of smaller and special chemical products. A major obstacle to the rapid implementation of these new concepts is the occurrence of fouling and deposits, which can severely disrupt continuous operation. 

Figure 1: The ENPRO initiative funded by the German Ministry of Economy and Climate Action

In the joint project KoPPonA 2.0, the implementation of continuous process concepts for various polymer specialties which are particularly susceptible to the formation of deposits is to be promoted. Therefore, plant operators, apparatus manufacturers, sensor manufacturers, material scientists and process engineers work closely together to elucidate the causes of coating formation and to ensure the operation of continuous plants through innovative approaches in apparatus design, surface modification and reaction control.

 

Preventing Fouling with Pre-Mixing

Many continuous processes rely on a pre-mixing stage to achieve ideal mixing before the reagents enter the reactor stage. The pre-mixer is usually by orders of magnitude smaller than the continuous reactor, i.e., a milli- or micro-mixer. The mixing on molecular scale depends on the complex interplay between fluid dynamics, mass transfer and chemistry. Conventional milli- and micro mixers are investigated by means of

  • Direct Numerical Simulations (Figure 2 A),

  • the novel Imaging UV/Vis Spectroscopy to capture transient and reactive multi-component systems in 2D (Figure 2 B) and

  • Confocal Laser Scanning Microscopy using Laser-Induced Fluorescence (CLSM-LIF) to record stationary 3D concentration fields (Figure 2 C).

Figure 2: (A) DNS of a split-and-recombine mixer, (B) imaging UV/Vis spectroscopy on a split-and-recombine mixer, (C) CLSM-LIF on a split-and-recombine mixer.

In CFD simulations the grid resolution needs to account for the length scale of mass transfer in miscible liquid-liquid systems (high Schmidt number problem). One main focus point of this research lies in investigating the length scale of non-reactive mixing and reactive mixing, respectively.

 

Numerical Modeling of Deposit Formation

Deposit Formation (Fouling) in polymer solutions is driven by two mechanisms. Homogeneous fouling describes the growth of deposits on surfaces due to increasing polymer chain length and solution viscosity (auto-acceleration) in near-wall regions. Figure 3 shows the local increase of viscosity in regions of large residence times (i.e., vortex structures). Eventually, the chain length is sufficiently long so that gels or solids forms at the wall, leading to the plugging of the reactor. This behavior is modeled in CFD by means of a solution-viscosity approach dependent on the polymer reaction yields. This allows for optimization of geometry and operating conditions to delay and prevent cleaning intervals.

Figure 3: Viscosity increase of a polymer reaction in the entry region of a tube reactor with static mixing.

As the second mechanism, heterogeneous fouling occurs by means of direct precipitation of solid polymers from the solution. These polymers can grow in size, coalesce and accumulate at surfaces. The precipitation is modeled by an Euler-Lagrangian Approach in CFD. The continuous and discrete phases are coupled through local sink/source terms that are dependent on the local polymer chain lengths. Exemplary particle trajectories are shown in Figure 4.