Prof. Dr. Alexandra von Kameke

Department of Mechanical Engineering and Production
Hamburg University of Applied Sciences
Berliner Tor 21
20099 Hamburg, Germany
Email: Prof. Dr. Alexandra von Kameke
Phone: +49 40 428 75 - 8624

 


Research Interest

 

  •  2D-Turbulence
  • Reaction-Diffusion-Advection Systems
  • Faraday Flow 
  • Vorticity generation
  • Global and local mixing dynamics and statistics
  • Turbulent inter-scale kinetic energy transfer
  • Pipe turbulence
  • Reaction front spreading


We are glad to welcome our new employee Raffaele Colombi (M.Sc. in Aeronautical Engineering, Linköping Sweden). He will be concerned with the DFG-Project:

 

"Generation of energy and vorticity production by surface waves through two-dimensional turbulence effects"

 

We study energy condensation in quasi two-dimensional turbulence that is driven by surface waves. This physical mechanism is investigated with regard to its potential for energy production.
In two-dimensional turbulence the net energy is transferred from small scales to large scales. Energy condensation develops when large scale friction is low and energy piles up at large scales. In this way, energy condensation produces large ordered flow structures from disordered small scale forcing that drives the two-dimensional turbulence. It was shown only recently that two-dimensional turbulence can also be driven by surface waves [von Kameke et al. 2011].

However, it is unclear if two-dimensional turbulence and energy condensation can also be driven by more naturally occurring unordered forcing as for instance provided by oceanic surface waves. Further, it is not yet fully understood how non-breaking surface waves generate horizontal vorticity, and if the waves have to possess certain properties, i.e., if they need to be standing, non-linear or monochromatic [Francois et al. 2014, Filatov et al. 2016]. Additionally, the necessary boundary conditions for energy condensation are vague and need clarification. And, it needs to be addressed if the process of energy condensation is stable to the introduction of further sources of drag, i.e., when a turbine is plugged into the fluid flow in order to retrieve energy.

Here, these open points are to be investigated using a Faraday experiment [von Kameke et al. 2010, von Kameke et al. 2011, von Kameke et al. 2013]. The generation of vorticity by the surface waves and the influence of the boundary- and forcing- conditions on energy condensation will be studied as well as the velocity statistics. To this end the full unsteady three-dimensional velocity field at the water surface and below the water surface needs to be recorded which has not been investigated so far. The latest optical methods will be used, such as time-resolved high speed planar particle image velocimetry and time-resolved three-dimensional particle image velocimetry and particle tracking. The complete velocity data allows to doubtlessly verify, if the flow obtained in each case is two-dimensional and, if energy condensation takes place. Two-dimensionality is analyzed on the basis of energy and enstrophy spectra and spectral fluxes, calculated with the aid of a novel filtering method [Eyink, 1995, von Kameke et al. 2011, von Kameke et al. 2013]. Moreover, existing three- dimensional flow structures will be identified and characterized. The forcing, exerted by the surface waves on the fluid-particles, and the resulting vorticity generation will be quantified by measuring the fluid surface elevation simultaneously to the PIV measurements and the subsequent usage of Lagrangian methods [von Kameke et al. 2011, von Kameke et al. 2013, LaCasce 2008] that allow to correlate both movements. The objective of this study is to uncover a new effective mechanism to retrieve renewable energy and will broaden insight into surface wave physics and two-dimensional turbulence. 

 

Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 395843083

Publications

[135639]
Title: Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow
Written by: A. von Kameke, F. Huhn, G. Fernández-García, A. P. Muñuzuri, and V. Pérez-Muñuzuri
in: Phys. Rev. June 2010
Volume: 81 Number:
on pages:
Chapter:
Editor:
Publisher: ResearchGate
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1103/PhysRevE.81.066211
URL: https://www.researchgate.net/publication/46423043_Propagation_of_a_chemical_wave_front_in_a_quasi-two-dimensional_superdiffusive_flow
ARXIVID:
PMID:

[doi] [www] [BibTex]

Note:

Abstract: Pattern formation in reaction-diffusion systems is an important self-organizing mechanism in nature. Dynamics of systems with normal diffusion do not always reflect the processes that take place in real systems when diffusion is enhanced by a fluid flow. In such reaction-diffusion-advection systems diffusion might be anomalous for certain time and length scales. We experimentally study the propagation of a chemical wave occurring in a Belousov-Zhabotinsky reaction subjected to a quasi-two-dimensional chaotic flow created by the Faraday experiment. We present a novel analysis technique for the local expansion of the active wave front and find evidence of its superdiffusivity. In agreement with these findings the variance ?(2)(t)?t(?) of the reactive wave grows supralinear in time with an exponent ?>2. We study the characteristics of the underlying flow with microparticles. By statistical analysis of particle trajectories we derive flight time and jump length distributions and find evidence that tracer-particles undergo complex trajectories related to Lévy statistics. The propagation of active and passive media in the flow is compared.