Publications


Here you will find all publications of the Institut of Multiphase Flows that have a DOI or an ISBN. The individual entries can be downloaded in BibTex format.

For a detailed search in our list, please click here.

Posters of conventions and conferences can be found here.


[126142]
Title: How coherent structures dominate the residence time in a bubble wake: An experimental example
Written by: Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M,:
in: Chemical Engineering Science November 2019
Volume: 207 Number:
on pages: 317-326
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1016/j.ces.2019.06.033
URL: https://www.sciencedirect.com/science/article/pii/S0009250919305366?dgcid=author
ARXIVID:
PMID:

[doi] [www] [BibTex]

Note:

Abstract: Timescales and residence times in reactive multiphase flows are essential for product selectivity. For instance when a gas species is consumed, e.g., by a competitive consecutive reaction with moderate reaction kinetics where reaction timescales are comparable to relevant mixing timescales. To point out the importance of the details of the fluid flow, we analyze experimental velocity data from a Taylor bubble wake by means of Lagrangian methods. By adjusting the channel diameter in which the Taylor bubble rises, and thus the rise velocity, we obtain three different wake regimes. Remarkably, the residence times of passive particles advected in the bubble wake’s velocity field show a peak for intermediate rise velocities. This observation seems unintuitive at first glance because one expects a faster removal of passive tracers for a faster overall flow rate. However, the details of the flow topology analyzed using Finite Time Lyapunov Exponent (FTLE) fields and Lagrangian Coherent Structures (LCS) reveal the existence of a coherent vortical pattern in the bubble wake which explains the long residence times. The increased residence times within the vortical structure in combination with the close bubble interface acting as a constant gas species source could enhance side product generation of a hypothetical competitive consecutive reaction, where the first reaction with the gas species forms the desired product and the second the side product.