OUREL - Optimal Utilization of Renewable Energies in Low Voltage

 

Projektziel

Die Dezentralisierung der Stromerzeugung einerseits und die Elektrifizierung z.B. des Wärme- und Mobilitätssektors andererseits bilden wichtige Eckpfeiler der Energiewende. Ihre Umsetzung hat zur Folge, dass in den kommenden Jahren eine Vielzahl von Erzeugungs-, Verbrauchs- und Speicheranlagen in bestehende Niederspannungsnetze integriert werden muss. Um das Potential der erneuerbaren Anlagen bestmöglich zu nutzen, werden neue Konzepte zur Betriebsführung benötigt, die alle flexiblen Netzteilnehmer mit einbeziehen. Die Dezentralität und hohe Volatilität der erneuerbaren Erzeugungsanlagen stellen dabei wesentliche Herausforderungen dar. Im OUREL-Projekt entwickeln wir ein dezentrales Betriebsführungsverfahren für Niederspannungsnetze mit einer hohen Anzahl steuerbarer Netzteilnehmer. Ziel ist die Optimierung der eingespeisten bzw. entnommenen Leistungen hinsichtlich eines über alle Teilnehmer ermittelten Nutzenmaßes. Dieses Konzept wurde in Kommunikationsnetzen bereits umfangreich untersucht und wird hier auf das Stromnetz übertragen. Ein besonderer Fokus liegt dabei auf einer hohen Updaterate und dem sich daraus ergebenden Spannungsfeld zwischen ermöglichten Modellvereinfachungen einerseits und steigendem Kommunikationsaufwand andererseits. Im Aufgabenbereich des ieet liegt die Modellierung des elektrischen Niederspannungsnetzes inklusive der angeschlossenen steuerbaren Netzteilnehmer. Der Fokus liegt dabei auf Photovoltaikanlagen, Elektrofahrzeugen sowie Wärmepumpen. Weiterhin entwickeln wir die Algorithmen zur Netzzustandsschätzung, mit denen der Zustand eines Niederspannungsnetzes unter Ausnutzung verschiedener Datenquellen bestimmt werden kann. Bei der Entwicklung der Optimierungsalgorithmen liegt unser Beitrag in erster Linie in der Berücksichtigung der im Netz einzuhaltenden Spannungs- und Stromgrenzen.

Tools

Im OUREL-Projekt verwenden wir Matlab und Simulink zur Modellierung der Niederspannungsnetze sowie zur Entwicklung und Simulation der Zustandsschätz- und Optimierungsalgorithmen. Um Kommunikationsnetze realistisch einzubinden, führen wir Co-Simulationen mit einem an der TUHH entwickelten Kommunikationsnetzemulator durch. Weiterhin nutzen wir Controller-Hardware-in-the-Loop-Simulationen, in denen die entwickelten Algorithmen auf realer Steuerungshardware implementiert und in Zusammenspiel mit dem OPAL-Echtzeitrechner im PHiLsLab unter Echtzeitbedingungen getestet werden.

Ansprechperson

Hanko Ipach

Laufzeit

01.10.2019 bis 30.09.2022

Förderung

Partner

Institute of Communication Networks (TUHH)

Veröffentlichungen

[147486]
Title: Utility-Optimizing Real-Time Congestion Management in Low Voltage Distribution Grids
Written by: Ipach, H.; Becker, C.
in: Proc. of IEEE Innovative Smart Grid Technologies Europe 2020 2020
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address: Delft
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL:
ARXIVID:
PMID:

[BibTex]

Note: ourel

Abstract: In this paper, we propose a method for the prevention of grid congestions in low voltage distribution grids which is suitable for real-time implementation. In our approach, a central controller is connected to the flexible prosumers and curtails their active power set values if necessary. The curtailment minimizes the loss of overall utility, which is expressed by concave functions of the prosumers’ power consumption and production, respectively. In this way, the optimization aims at reaching a global fairness. By means of utility factors, prosumers are able to express their urgency of realizing their desired power set value. To account for the real-time requirement, linearized power flow equations are used. The effectiveness of the proposed method is demonstrated in simulations of an exemplary LV grid with a high share of electric vehicle chargers.