Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg
E-Mail: tobias.knopp(at)tuhh.de

 

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[145077]
Title: Towards accurate modeling of the multidimensional MPI physics
Written by: T. Kluth, P. Szwargulski, T. Knopp
in: International Journal on Magnetic Particle Imaging 2020
Volume: 6 Number: 2
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009004
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/318
ARXIVID:
PMID:

[doi] [www] [BibTex]

Note: inproceedings

Abstract: The MPI image reconstruction problem requires, particularly for 2D and 3D excitation patterns, a measured system matrix due to the lack of an accurate model that is capable of describing the nanoparticles’ magnetization behavior in the MPI setup. Here we exploit a model based on Néel rotation for large particle ensembles and we find model parameters that describe measured 2D MPI data with much higher precision than state of the art MPI models, which is also illustrated in phantom experiments. This is a short summary of the recent work [4] to which we refer to for all further details.