Patryk Szwargulski, M.Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 203
22529 Hamburg

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56309
E-Mail: p.szwargulski(at)
E-Mail: patryk.szwargulski(at)

Research Interests

  • Magnetic Particle Imaging
  • Image Reconstruction
  • Signal and Image Processing

Curriculum Vitae

In 2015 Patryk Szwargulski graduated with a master's degree thesis on Fast Reconstruction of Magnetic Particle Imaging Data using the Focusfields. Currently he is a PhD student in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.


Title: Development of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapment into human erythrocytesDevelopment of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapm
Written by: A. Antonelli, P. Szwargulski, E. S. Scarpa, F. Thieben, C. Grüttner, G. Ambrosi, L. Guidi, P. Ludewig, T. Knopp and M. Magnani
in: Nanomedicine April 2020
Volume: 15 Number: 8
on pages: 739-753
Publisher: Future Medicine Ltd
how published:

[www] [BibTex]

Note: article

Abstract: Aim: Magnetic particle imaging (MPI) is highly promising for biomedical applications, but optimal tracers for MPI, namely superparamagnetic iron oxide-based contrast agents, are still lacking. Materials & methods: The encapsulation of commercially available nanoparticles, specifically synomag®-D and perimag®, into human red blood cells (RBCs) was performed by a hypotonic dialysis and isotonic resealing procedure. The amounts of superparamagnetic iron oxide incorporated into RBCs were determined by Fe quantification using nuclear magnetic resonance and magnetic particle spectroscopy. Results: Perimag-COOH nanoparticles were identified as the best nanomaterial for encapsulation in RBCs. Perimag-COOH-loaded RBCs proved to be viable cells showing a good magnetic particle spectroscopy performance, while the magnetic signal of synomag-D-COOH-loaded RBCs dropped sharply. Conclusion: Perimag-COOH-loaded RBCs could be a potential tool for MPI diagnostic applications.