Dr.-Ing. Matthias Gräser

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 212
22529 Hamburg

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25812
E-Mail: matthias.graeser(at)tuhh.de
E-Mail: ma.graeser(at)uke.de

Research Interests

  • Magnetic Particle Imaging
  • Low Noise Electronics
  • Inductive Sensors
  • Passive Electrical Devices

Curriculum Vitae

Matthias Gräser submitted his Dr.-Ing. thesis in january 2016 at the institute of medical engineering (IMT) at the university of Lübeck and is now working as a Research Scientist at the institute for biomedical imaging (IBI) at the technical university in Hamburg, Germany.  Here he develops concepts for Magnetic-Particle-Imaging (MPI) devices. His main aim is to improve the sensitivity of the imageing devices and improve resolution and application possibilities of MPI technology.

In 2011 Matthias Gräser started to work at the IMT as a Research Associate in the Magnetic Particle Imaging Technology (MAPIT) project. In this project he devolped the analog signal chains for a rabbit sized field free line imager. Additionally he developed a two-dimensional Magnetic-Particle-Spectrometer. This device can apply various field sequences and measure the particle response with a very high signal-to-noise ratio (SNR).

The dynamic behaviour of magnetic nanoparticles is still not fully understood. Matthias Gräser investigated the particle behaviour by modeling the particle behaviour with stochastic differential equations. With this model it is possible to simulate the impact of several particle parameters and field sequences on the particle response .

In 2010 Matthias Gräser finished his diploma at the Karlsruhe Institue of Technology (KIT). His diploma thesis investigated the nerve stimulation of magnetic fields in the range from 4 kHz to 25 kHz.

Journal Publications

[92916]
Title: Enlarging the field of view in magnetic particle imaging using a moving table approach.
Written by: P. Szwargulski, N. Gdaniec, M. Graeser, M. Möddel, F. Griese, T. Knopp
in: <em>Proceedings of SPIE Medical Imaging</em>. (2018).
Volume: <strong>10578</strong>. Number:
on pages: 10578 - 10578 - 7
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1117/12.2293602
URL: https://doi.org/10.1117/12.2293602
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, multi-patch

Abstract: Magnetic Particle Imaging (MPI) is a highly sensitive imaging modality, which allows the visualization of magnetic tracer materials with a temporal resolution of more than 40 volumes per second. In MPI the size of the field of view scales with the strength of the applied magnetic fields. In clinical applications this strength is limited by peripheral nerve stimulation and specific absorption rates. Therefore, the size of the field of view is usually no larger than a few cubic centimeters. To bypass this limitation additional focus fields and/or a external object movements can be applied. In this work we investigate the later approach, where an object is moved through the scanner bore one step at a time, while the MPI scanner continuously acquires data from its static field of view. Using 3D phantom and 3D+t in-vivo data it is shown that the data can be jointly reconstructed after reordering the data with respect to the stepwise object shifts and heart beat phases.

Conference Proceedings

[92916]
Title: Enlarging the field of view in magnetic particle imaging using a moving table approach.
Written by: P. Szwargulski, N. Gdaniec, M. Graeser, M. Möddel, F. Griese, T. Knopp
in: <em>Proceedings of SPIE Medical Imaging</em>. (2018).
Volume: <strong>10578</strong>. Number:
on pages: 10578 - 10578 - 7
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1117/12.2293602
URL: https://doi.org/10.1117/12.2293602
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, multi-patch

Abstract: Magnetic Particle Imaging (MPI) is a highly sensitive imaging modality, which allows the visualization of magnetic tracer materials with a temporal resolution of more than 40 volumes per second. In MPI the size of the field of view scales with the strength of the applied magnetic fields. In clinical applications this strength is limited by peripheral nerve stimulation and specific absorption rates. Therefore, the size of the field of view is usually no larger than a few cubic centimeters. To bypass this limitation additional focus fields and/or a external object movements can be applied. In this work we investigate the later approach, where an object is moved through the scanner bore one step at a time, while the MPI scanner continuously acquires data from its static field of view. Using 3D phantom and 3D+t in-vivo data it is shown that the data can be jointly reconstructed after reordering the data with respect to the stepwise object shifts and heart beat phases.