Marija Boberg, M.Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 203
22529 Hamburg

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56309
E-Mail: m.boberg@uke.de
E-Mail: marija.boberg@tuhh.de

Research Interests

  • Magnetic Particle Imaging
  • Image Reconstruction
  • Magnetic Fields

Curriculum Vitae

Marija Boberg studied mathematics at the University of Paderborn between 2011 and 2017. She received her master's degree with her thesis on "Analyse von impliziten Lösern für Differential-Algebraische Gleichungssysteme unter Verwendung von Algorithmischem Differenzieren". Currently, she is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[120372]
Title: Interpretation of Cartesian Data based on a Simulated Human-Sized MPI Brain Imager 9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)
Written by: P. Szwargulski, M. Graeser, F. Thieben, N. Gdaniec, F. Werner, M. Boberg, F. Griese, M. Möddel, and T. Knopp
in: 2019
Volume: Number:
on pages: 37-38
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL:
ARXIVID:
PMID:

[BibTex]

Note: inproceedings, brainimager

Abstract: Recently the first proof of concept for a human scaled MPI scanner for brain applications was presented. It features a new imaging concept with a mechanically moveable selection field and uses a dynamic Cartesian imaging sequence. In this work, different kinds of data processing and image reconstruction approaches for Cartesian sequences are compared.

Conference Publications

[120372]
Title: Interpretation of Cartesian Data based on a Simulated Human-Sized MPI Brain Imager 9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)
Written by: P. Szwargulski, M. Graeser, F. Thieben, N. Gdaniec, F. Werner, M. Boberg, F. Griese, M. Möddel, and T. Knopp
in: 2019
Volume: Number:
on pages: 37-38
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL:
ARXIVID:
PMID:

[BibTex]

Note: inproceedings, brainimager

Abstract: Recently the first proof of concept for a human scaled MPI scanner for brain applications was presented. It features a new imaging concept with a mechanically moveable selection field and uses a dynamic Cartesian imaging sequence. In this work, different kinds of data processing and image reconstruction approaches for Cartesian sequences are compared.