Dr.-Ing. Florian Griese

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

E-Mail: florian.griese@tuhh.de

Research Interests

  • Magnetic Particle Imaging
  • Signal- and Image Processing
  • Image Registration
  • Parallel Force and Imaging MPI Application
  • Spectral-MPI for Interventional Application

Curriculum Vitae

Florian Griese studied Medical Engineering Science at the University of Lübeck between 2007 and 2012. He received his master's degree in medical engineering science from the University of Lübeck in 2012 on X-Space Reconstruction with Lissajous Trajectories in Magnetic Particle Imaging. Between 2013 and 2016 he worked as a software developer at EUROIMMUN in the field of automation development.
Currently, he is a PhD student in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.


Title: Human-sized Magnetic Particle Imaging for Brain Applications.
Written by: M. Graeser, F. Thieben, P. Szwargulski, F. Werner, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O.M. Weber, O. Woywode, B. Gleich, and T. Knopp
in: <em>Nature Communications</em>. (2019).
Volume: <strong>10</strong>. Number: (1936),
on pages: 1-9
how published:
DOI: 10.1038/s41467-019-09704-x
URL: https://www.nature.com/articles/s41467-019-09704-x


Note: article, brainimager, openaccess

Abstract: Determining the brain perfusion is an important task for diagnosis of vascular diseases such as occlusions and intracerebral haemorrhage. Even after successful diagnosis, there is a high risk of restenosis or rebleeding such that patients need intense attention in the days after treatment. Within this work, we present a diagnostic tomographic imager that allows access to brain perfusion quantitatively in short intervals. The device is based on the magnetic particle imaging technology and is designed for human scale. It is highly sensitive and allows the detection of an iron concentration of 263 pmol(Fe)/ml, which is one of the lowest iron concentrations imaged by MPI so far. The imager is self-shielded and can be used in unshielded environments such as intensive care units. In combination with the low technical requirements this opens up a variety of medical applications and would allow monitoring of stroke on intensive care units.