Interference Evaluation in ECMA-368 WPAN with DRP MAC Protocol

Holger Rosier
ComNets Research Group
RWTH Aachen University, Germany
26/03/2014
Contents

- Motivation
- Problem Description
- ECMA-368
 - Beacon Period (BP)
 - Data Transfer Period (DTP)
- Analytical Study
- Results
- Outlook and Conclusion
Motivation

• Wireless communication in residential home environments covers wide range of applications

• Common market trend from multimedia capable devices (DEVs) towards applications demanding for very high data rate transmission service: TV and video data transmission

• Outdated Wifi’s mono-cluster approach replaced by multi-cluster home networks yielding intended high data throughput in limited area [1]

➡️ Motivation to use UWB ECMA-368 for short range ad-hoc communication in residential home environment

Problem Description

• Widespread use of wireless communication systems operating in license-exempt frequency bands goes along densely populated network scenarios

• DEV applies reservation based DRP controlled medium access to transmit user data reliably carried in successively recurring Medium Access Slots (MASs)

• Spatial reuse of MAS channel resources in not fully meshed network scenarios causes interference to user data frame transmission

➔ Limits achievable cluster data throughput and coverage range
ECMA-368[2]: Medium Access Control (MAC) Overview

- Fully distributed MAC:
 - DEVs unhide DEV located in the neighbourhood through short management frames broadcasted during Beacon Period (BP)
 - DEV negotiates MASs for user data frame transmission in advance to carry user data frames during Data Transfer Period (DTP)

- Management frames carried in Beacon Slots (BSs) are protected from interference caused by transmission in the two hop neighbourhood
- User data frames carried in MAS exclusively are protected from interference caused by DEVs data transmissions located in one hop Beacon Group (BG)

ECMA-368: Medium Access Control
Beacon Period (BP)

- Beacons are broadcasted in recurring BSs

- Several Information Elements (IEs) compose beacon

- DEV are aware of DEVs located in one and two hop neighbourhood, defers from trying to reserve respective BSs

- Beacon Decoding Range is rather limited by noise than interference caused from data frame transmission
• Beacons are broadcasted in recurring BSs

• Several Information Elements (IEs) compose beacon

• DEV are aware of DEVs located in one and two hop neighbourhood, defers from trying to reserve respective BSs

• Beacon Decoding Range is rather limited by noise than interference caused from data frame transmission
ECMA-368: Medium Access Control
Beacon Period (BP)

- Beacons are broadcasted in recurring BSs

- Several Information Elements (IEs) compose beacon

- DEV are aware of DEVs located in one and two hop neighbourhood, defers from trying to reserve respective BSs

- Beacon Decoding Range is rather limited by noise than interference caused from data frame transmission
ECMA-368: Medium Access Control
Beacon Period (BP)

- Beacons are broadcasted in recurring BSs

- Several Information Elements (IEs) compose beacon

- DEV are aware of DEVs located in one and two hop neighbourhood, defers from trying to reserve respective BSs

- Beacon Decoding Range is rather limited by noise than interference caused from data frame transmission
ECMA-368: Medium Access Control
Data Transfer Period (DTP)

- User Data Frames are carried in reserved MASs negotiated previously.
- Management information on DRP controlled medium access is carried in Beacons.
- MASs are granted exclusively until DEV suspends DRPIE from Beacon transmission.
- DEVs not located in one-hop BG from owner or target may reuse MASs randomly for user data frame transmission.
- Maximum interference power is expected where Beacon Decoding Range covers same area \(^\text{[3]}\).

ECMA-368: Medium Access Control Data Transfer Period (DTP)

- User Data Frames are carried in reserved MASs negotiated previously.
- Management information on DRP controlled medium access is carried in Beacons.
- MASs are granted exclusively until DEV suspends DRPIE from Beacon transmission.
- DEVs not located in one-hop BG from owner or target may reuse MASs randomly for user data frame transmission.
- Maximum interference power is expected where Beacon Decoding Range covers same area [3].

ECMA-368: Medium Access Control Data Transfer Period (DTP)

- User Data Frames are carried in reserved MASs negotiated previously.
- Management information on DRP controlled medium access is carried in Beacons.
- MASs are granted exclusively until DEV suspends DRPIE from Beacon transmission.
- DEVs not located in one-hop BG from owner or target may reuse MASs randomly for user data frame transmission.
- Maximum interference power is expected where Beacon Decoding Range covers same area [3].

ECMA-368: Medium Access Control Data Transfer Period (DTP)

- User Data Frames are carried in reserved MASs negotiated previously.
- Management information on DRP controlled medium access is carried in Beacons.
- MASs are granted exclusively until DEV suspends DRPIE from Beacon transmission.
- DEVs not located in one-hop BG from owner or target may reuse MASs randomly for user data frame transmission.
- Maximum interference power is expected where Beacon Decoding Range covers same area \[3\].

ECMA-368: Medium Access Control
Data Transfer Period (DTP)

- User Data Frames are carried in reserved MASs negotiated previously.

- Management information on DRP controlled medium access is carried in Beacons.

- MASs are granted exclusively until DEV suspends DRPIE from Beacon transmission.

- DEVs not located in one-hop BG from owner or target may reuse MASs randomly for user data frame transmission.

- Maximum interference power is expected where Beacon Decoding Range covers same area \[^3\].

ECMA-368: Medium Access Control
Data Transfer Period (DTP)

- User Data Frames are carried in reserved MASs negotiated previously

- Management information on DRP controlled medium access is carried in Beacons

- MASs are granted exclusively until DEV suspends DRPIE from Beacon transmission

- DEVs not located in one-hop BG from owner or target may reuse MASs randomly for user data frame transmission

- Maximum interference power is expected where Beacon Decoding Range covers same area [3]

Scenario
Description & Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Devs per (m^2)</td>
<td>(\rho = 0.05 \frac{DEVs}{m^2})</td>
</tr>
<tr>
<td>DEV Position</td>
<td>Random uniform distributed</td>
</tr>
<tr>
<td>Pathloss Calculation</td>
<td>Mean Pathloss Channel Model (MPCM)</td>
</tr>
<tr>
<td>Mean Beacon Decoding Range</td>
<td>(r_{bg} = 16m)</td>
</tr>
<tr>
<td>Frequency</td>
<td>3.96GHz</td>
</tr>
<tr>
<td>Data Frame Size</td>
<td>1500B</td>
</tr>
<tr>
<td>Modulation and Coding Schemes (MCS)</td>
<td>53.3MB/s ... 480MB/s</td>
</tr>
<tr>
<td>Evaluated Scenarios Size</td>
<td>(r_s = n \cdot r_{gb}) [n = 1, 2, \ldots, 5]</td>
</tr>
<tr>
<td>Target FER</td>
<td>3%</td>
</tr>
<tr>
<td>Distance between owner and target, considered for MCS probability distribution</td>
<td>0.1m, ..., 9m</td>
</tr>
</tbody>
</table>
• Connectivity depends on number of DEVs located in the BG

\[
c_f = \sum_{i=1}^{N} \frac{M_i}{N(N-1)} = \frac{\rho \pi \cdot r_{bg}^2 - 1}{\rho \pi \cdot r_s^2 - 1} \approx \frac{r_{bg}^2}{r_s^2}
\]

connectivity \(c_f \), \(N \) number of DEVs located in scenario, \(\rho \) DEV density, \(M_i \) number of DEVs in one-hop BG neighborhood, \(r_{bg} \) Beacon Decoding Range, \(r_s \) evaluated scenario size

• Mean Number of DEVs located in BG

\[
N_{BG} = N \cdot c_f
\]

• Number of DEVs where first \(k = 1 \) co-channel interferer may occur

\[
N_{k=1} = (1 - c_f) \cdot N
\]

Analytical Study
Connectivity & Beacon Group

- Connectivity depends on number of DEVs located in the BG
 \[c_f = \sum_{i=1}^{N} M_i / N(N - 1) = \frac{\rho \pi \cdot r_{bg}^2 - 1}{\rho \pi \cdot r_s^2 - 1} \approx \frac{r_{bg}^2}{r_s^2} \]
 connectivity \(c_f \), \(N \) number of DEVs located in scenario, \(\rho \) DEV density, \(M_i \) number of DEVs in one-hop BG neighborhood, \(r_{bg} \) Beacon Decoding Range, \(r_s \) evaluated scenario size

- Mean Number of DEVs located in BG
 \[N_{BG} = N \cdot c_f \]

- Number of DEVs where first \(k = 1 \) co-channel interferer may occur
 \[N_{k=1} = (1 - c_f) \cdot N \]

Connectivity depends on number of DEVs located in the BG:

\[c_f = \sum_{i=1}^{N} \frac{M_i}{N(N-1)} = \frac{\rho \pi \cdot r_{bg}^2 - 1}{\rho \pi \cdot r_s^2 - 1} \approx \frac{r_{bg}^2}{r_s^2} \]

- Connectivity \(c_f \), \(N \) number of DEVs located in scenario, \(\rho \) DEV density, \(M_i \) number of DEVs in one-hop BG neighborhood, \(r_{bg} \) Beacon Decoding Range, \(r_s \) evaluated scenario size

- Mean Number of DEVs located in BG

\[N_{BG} = N \cdot c_f \]

- Number of DEVs where first \(k = 1 \) co-channel interferer may occur

\[N_{k=1} = (1 - c_f) \cdot N \]

Analytical Study
Number of DEVs able to Reuse MASs

- Number of DEVs where second $k = 2$ co-channel interferer may occur
 \[N_2 = \bar{N}_2 + (N_1 - \bar{N}_2) \cdot c_f \]
 where $\bar{N}_2 = (1 - c_f)^2 \cdot N$

- Considers DEVs located in more than one BG
 \[(N_1 - \bar{N}_2) \cdot c_f \]

- Leads in general to \[^{[4]}\]
 \[N_k = N \left(1 - c_f\right)^{k+1} \]
 \[+ N_{k-1} c_f + \sum_{i=1}^{k-2} (N_i - N_{i+1}) c_f^{k-i} \]
 where N_k states number of DEVs considered to calculate k^{th} reuse of MASs

Analytical Study
Number of DEVs able to Reuse MASs

- Number of DEVs where second $k = 2$ co-channel interferer may occur
 \[N_2 = \bar{N}_2 + (N_1 - \bar{N}_2) \cdot c_f \]
 where $\bar{N}_2 = (1 - c_f)^2 \cdot N$

- Considers DEVs located in more than one BG
 \[(N_1 - \bar{N}_2) \cdot c_f \]

- Leads in general to 4
 \[N_k = N \left(1 - c_f\right)^{k+1} \]
 \[+N_{k-1}c_f + \sum_{i=1}^{k-2} (N_i - N_{i+1}) c_f^{k-i} \]
 where N_k states number of DEVs considered to calculate k^{th} reuse of MASs

Analytical Study
Number of DEVs able to Reuse MASs

- Number of DEVs where second $k = 2$ co-channel interferer may occur
 \[N_2 = \widehat{N}_2 + (N_1 - \widehat{N}_2) \cdot c_f \]
 where \(\widehat{N}_2 = (1 - c_f)^2 \cdot N \)

- Considers DEVs located in more than one BG
 \[(N_1 - \widehat{N}_2) \cdot c_f\]

- Leads in general to \([4] \)
 \[N_k = N \left(1 - c_f\right)^{k+1} \]
 \[+ N_{k-1} c_f + \sum_{i=1}^{k-2} (N_i - N_{i+1}) c_f^{k-i} \]
 where N_k states number of DEVs considered to calculate k^{th} reuse of MASs

Analytical Study
Number of DEVs able to Reuse MASs

- Number of DEVs where second $k = 2$ co-channel interferer may occur
 \[N_2 = \bar{N}_2 + \left(N_1 - \bar{N}_2 \right) \cdot c_f \]
 where $\bar{N}_2 = \left(1 - c_f \right)^2 \cdot N$

- Considers DEVs located in more than one BG
 \[(N_1 - \bar{N}_2) \cdot c_f \]

- Leads in general to \[^4\]
 \[N_k = N \left(1 - c_f \right)^{k+1} \]
 \[+ N_{k-1} c_f + \sum_{i=1}^{k-2} (N_i - N_{i+1}) c_f^{k-i} \]
 where N_k states number of DEVs considered to calculate k^{th} reuse of MASs

Analytical Study
Probability of co-Channel Interferer

- Mean number of available MASs for DRP controlled user data frame transmission
 \[\bar{d} = \frac{1}{N_{BG}} \sum_{i=0}^{N_{BG}-1} I_{MAS} - i \]

- Total number of available MASs in SF \(I_{MAS} = 256 \)

- Probability to find exactly \(k \) co-channel interferer
 \[p_k = \binom{N_k}{k} \left(\frac{1}{\bar{d}} \right)^k \left(1 - \frac{1}{\bar{d}} \right)^{N_{k+1}} \]
 \[p_0 = 1 - \sum_{k=1}^{\infty} p_k \]

Results
Probability of Co-Channel Interferer

\[r_k = 3 \cdot r_{bg} \]

\[r_k = 4 \cdot r_{bg} \]

- Number of interfered DRP controlled user data frame transmissions is equivalent to MAS reuse in the scenario
- Probability that no DEV allocates MAS operated for user data frame transmission by another DEV decreases from 0.28 to 0.09 where radius \(r_k \) increases from \(3 \cdot r_{bg} \) to \(4 \cdot r_{bg} \)
- Monte Carlo experiment complies results obtained analytically
Results
Maximum Interference Power

- Interference power for increasing scenario size regarding parameter value $r_k = n \cdot r_{bg}$ with $n = 2, \ldots, 5$

- CDF tends to step function in scenarios where r_k increases
- Concerning results DRP limits interference power to value $\approx -77dBm$
Results
MCS Probability Distribution & Achievable Throughput

- MCS probability results considers random distance between DRP reservation owner and DRP reservation from uniform distribution and constant interference power

- Achievable throughput concerning rate fair scheduling calculates from

\[t_{hr} = \left(N_{BG} \cdot \sum_{i=1}^{7} \frac{p(MCS_i)}{rate_i} \right)^{-1} = 2.026 \frac{Mb}{s} \]

- Achievable throughput in Beacon Group is obtained from \(N_{BG} \cdot t_{hr} = 81.47 \frac{Mb}{s} \)
Conclusion:

- Interference power in UWB scenarios where DEVs operate DRP for user data frame transmission and allocate MAS randomly is limited to -77dBm

- Throughput achieved from DRP controlled medium access in densely populated network scenarios calculates to $81.47\frac{Mb}{s}\frac{1}{BG}$

Outlook:

- Apply Interference Aware Scheduling to gain throughput in UWB WPAN scenarios$^{[5]}$

Thank you for your attention!

Holger Rosier
hor@comnets.rwth-aachen.de