Network Planning for Stochastic Traffic Demands using a Genetic Algorithm

Dr. Nga Tran
Prof. Dr. Andreas Timm-Giel
Basic network planning problem

Given
- Network information (topologies, link cost, etc.)
- Traffic demands

Determine
- Route for each demand
- Bandwidth allocated for each link

Objective
The total network cost subject to network constraints is minimized.
Problem

Traffic demands are not deterministic but stochastic.

How to handle the uncertainty?
Planning Approaches

- Mean-rate based
 - Pro: low cost
 - Con: high amount of traffic is discarded

- Peak-rate based
 - Pro: able to handle a large traffic demand variation
 - Con: very expensive

Statistical network planning

- Objective: minimize the cost
- Constraint: accept a violation probability for the link load
 (Grade of Service – GoS)
Mathematical model (1)

• Parameters:
 – Traffic demand distribution of a nodepair (sd) : \(t^{sd} \)
 (Traffic demands are statistically independent.)
 – Cost of a bandwidth unit on the link \(ij \): \(c_{ij} \)
 – GoS agreement: \(\varepsilon \)

• Variables:
 – Routing (binary) decision variable: \(f_{ij}^{sd} \)
 – Bandwidth assignment variable: \(b_{ij} \)
Mathematical model (2)

- Objective: minimize the total cost

$$\min \sum_{ij} c_{ij} \cdot b_{ij}$$

- Multi-commodity flow constraint

$$\sum_{j} f_{ij}^{sd} - \sum_{j} f_{ji}^{sd} = \begin{cases}
1 & i = s \\
-1 & i = d \\
0 & i \neq s, d
\end{cases} \quad \forall i$$
Mathematical model (3)

• Capacity constraint

Aggregated traffic distribution:

\[t = t_{s_1d_1} \otimes t_{s_2d_2} \otimes t_{s_3d_3} \]

Probability that the aggregated traffic is lower than the capacity \(b \) of a link is: \(\int_0^b t(x)dx \)
Mathematical model (4)

- Capacity constraint

\[
\prod_{\{s,d : f_{ij}^{sd} = 1\}} \int_0^{b_{ij}} (f_{ij}^{s_1d_1} \cdot t_{s_1d_1} \otimes f_{ij}^{s_2d_2} \cdot t_{s_2d_2} \otimes \ldots \otimes f_{ij}^{s_n d_n} \cdot t_{s_n d_n}) \, dx \geq 1 - \varepsilon
\]

\forall i, j

\[
P\{\text{link (i,j) is overloaded}\} \leq \varepsilon
\]

\[
b_{ij} = ?
\]
Calculate the link bandwidth b_{ij}

$$F(b_{ij}) = \prod_{\{s,d; f_{sd}^{ij} = 1\}}^{b_{ij}} \int_0^{b_{ij}} f_{ij}^{sd} \cdot t^{sd}(x)dx \geq 1 - \varepsilon$$

- $F(b_{ij})$ is the CDF of the traffic distribution on the link
 - a monotone function
- bisection method can be used to find b_{ij}

Solution interval
Genetic algorithm (1)

Generate initial population of solutions

Create new solutions by cross-over or mutation

Evaluate the solution quality

Discard „bad“ solutions to form a new population

Terminate?

Yes

No

Store the best solution
Genetic algorithm (2)

• A set of routes for each nodepair is pre-selected.
• A solution is encoded in a chromosome

 | 1 | 3 | 2 | 3 | 1 | 1 |

 nodepair

 selected route for the corresponding nodepair

 → a chromosome represents a routing solution for the problem.

• Calculate the required bandwidth for each „chromosome“ to guarantee GoS

 → calculate the cost of each „chromosome“
Genetic algorithm (3)

- Cross-over

```
1 3 2 3 1 1
1 1 3 2 3 1
```

- Mutation

```
1 3 2 3 1 1
```

```
3 1 1 1 1 3 2
```
Performance Evaluation

- Traffic demands are taken from GEANT project*
- Link cost = 1 per Mbps
- GoS agreement: $\varepsilon = 5\%$

(*) http://www.geant.net/
Performance of the genetic algorithm

![Graph showing the performance of the genetic algorithm with total cost on the y-axis and number of iterations on the x-axis. The graph compares the best solution (red line) and the average solution (blue line).]
Results

<table>
<thead>
<tr>
<th></th>
<th>Mean rate</th>
<th>Peak rate</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized cost</td>
<td>0.42</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td>Link overload probability</td>
<td>18% - 25%</td>
<td>0%</td>
<td>5% (ε)</td>
</tr>
</tbody>
</table>

- Peak rate planning: too expensive
- Mean rate planning: high link overload probability

→ Statistical planning is a good compromise
Link utilization

[Graph showing link utilization over time, with lines for Traffic demand 1, Traffic demand 2, and Aggregated traffic.]
Cost vs. GoS

Total cost vs. GoS - \(\varepsilon(\%) \)
Conclusion

• Proposal of a solution for network planning problem with stochastical traffic demands using a genetic algorithm.

• Limitation: guarantee the overload probability for each link only

• Future work: guarantee the GoS for each end-to-end flow