Photo: Christian Schmid

Welcome to the Institute of High-Frequency Technology

On our website you will find insights into our diverse research projects, as well as information about our staff, courses, publications, and the latest news from our institute.

Together with our project partners, we conduct research on innovative topics such as non-contact vital signs measurement using radar for medical, veterinary and industrial applications. Other projects focus on ultra-low power communication networks, permittivity measurements and quantum computing research.

A distinctive feature of our institute is our combination of theoretical and experimental work. We employ advanced simulation techniques, manufacturing processes, precision measurement technology, as well as signal processing and machine learning for data analysis. Thanks to our in-house PCB manufacturing, precision mechanics workshop, and various 3D printers, we can rapidly implement theoretical concepts and test them in our antenna measurement chamber or on our linear stage.

Feel free to contact us directly to learn more about our work.

You can also find us here:

News at the IHF

18.05.22
Fabian Lurz organises the Student Design Competition for „Design of a Self-Interference Cancellation Coupler“ at the International Microwave Symposium.
12.05.22
On September, 13th and 14th, 2022 the Hamburg University of Technology will host the 1st Summer School for Machine Learning in Engineering. The Institute of High-Frequency Technology is one of the co-organizers.
10.05.22
On 10th Mai 2022 Mr. M.Sc Moritz Hägermann successfully defended his docotoral thesis with the titel "Backward-Wave Phenomena in Helix Traveling-Wave Tube Amplifiers".
22.04.22
Caspar Wasle wurde als Teilnehmer des International Space Weather Camps (ISWC) ausgewählt. Dieses vom DLR Neustrelitz, der South African National Space Agency (SANSA) und der University of Alabama in Huntsville organisierte Camp bietet Studenten und Absolventen von Studienfächern der Mathematik, Physik, Informatik und Ingenieurswissenschaften die Möglichkeit, sich intensiv mit dem spannenden und hochaktuellen Thema Weltraumwetter zu beschäftigen. Caspar Wasle hat sich zuvor als Wissenschaftliche Hilfskraft und im Rahmen seiner Bachelorarbeit am Institut im Bereich der Satellitenkommunikation (SANTANA-Aero 2) als äußerst engagierter Student hervorgetan. Wir haben Ihn sehr gerne bei seiner Bewerbung für einen Platz beim ISWC unterstützt und freuen uns, dass wir ihm nun zur Annahme gratulieren können. Im Namen des ganzen Instituts wünschen wir Caspar viel Spaß während der drei sicherlich sehr interessanten und lehrreichen Wochen.
28.01.22
Das Institut für Hochfrequenztechnik (IHF) der Technischen Universität Hamburg (TUHH) hat gemeinsam mit Forschern der FAU Erlangen-Nürnberg und der BTU Cottbus einen Artikel in der multidisziplinären Open-Access-Zeitschrift IEEE Access vorgestellt, bei dem die Einsatzmöglichkeiten von maschinellem Lernen zur Schätzung der Einfallsrichtung in Automobilradarsystemen untersucht werden.
24.11.21
Die virtuelle Veranstaltung “Artificial Intelligence in Engineering” bringt jedes Jahr eine Vielfalt von Anwendern aus den Ingenieurwissenschaften und verwandter Gebiete zusammen, um die neuesten AI-Trends in ihrer Berufs-Praxis vorzustellen. Das Event wurde dieses Jahr eröffnet durch die Keynote “Machine Learning in Engineering and Materials Science: On Your Marks, Get Set, … Go!?” von den MLE-Mitgliedern Christian Feiler, Fabian Lurz, Robert Meißner, Stefan Schulte, Christian Schuster und Gregor Vonbun-Feldbauer.
21.09.21
Das Institut für Hochfrequenztechnik (IHF) hat gemeinsam mit der FAU Erlangen-Nürnberg und Infineon Technologies AG einen neuen Ansatz des maschinellen Lernens vorgestellt, der mit einem hochintegrierten Radarsystem zuverlässig Personen erkennen und deren Aktivitäten klassifizieren kann.
23.08.24
On September 2nd at 10:30 a.m., Jan Markgraf will present the results of his Bachelor Thesis with the title: "Untersuchung von Skalierungsmethoden und spezifischen Misfit- und Wasserstoffbrückenbindungs-parametern in openCOSMO-RS".
placeholder
22.08.24
Our paper "Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials" has been published in Advanced Intelligent Systems. Click here to read more.
22.08.24
On September 10th at 10:00 a.m., Kirti Gupta will present the results of her Master Thesis with the title: "Characterization of porous transport layers in AEM Water Electrolysis".
placeholder
20.08.24
Ddue to planned maintenance the BigBlueButton video conference system will be unavailable on Tuesdeay, 03.09.2024 between 10:00 AM and 6:00 PM.
placeholder
19.08.24
Power and Energy-aware Computing on Heterogeneous Systems
19.08.24
Ddue to planned maintenance TUNE will be unavailable on Friday, 23.08.2024 between 4:00 PM and 5:00 PM.
placeholder
18.08.24
Vom 12. bis 14. August nahm das PKT an der NordDesign 2024 in Reykjavik, Island teil.
placeholder
16.08.24
Das Menü-Inhaltselement für ausgewählte Seiten und Unterseiten kann nun auch in einer Button-Optik ausgegeben werden. Dabei können die Buttons untereinander oder auch nebeneinander stehen. Bis zu drei Buttons nebeneinander sind möglich. Eine Anleitung finden Sie hier.
16.08.24
IGMaxHS – An Incremental MaxSAT Solver with Support for XOR Clauses
15.08.24
Modeling Cyber-Physical Systems (CPS) requires knowledge from various domains, including computer science, electrical and mechanical engineering, and control theory. One conventional approach to model CPS is to describe the physical relationships as a classical system of formulas. This requires, a solid understanding of the application domain is required to ensure relevant and accurate models. The behavior of a CPS can be estimated by numerical simulations using e.g. Matlab, Simulink, or Modelica. However, these approaches require that the system’s internals are sufficiently and accurately known, which often is not the case CPS. Thus we employ data driven learning approaches to automatically generate CPS models. We develop Flowcean, which offers a toolbox for modeling CPS from various industrial domains [1]. The project’s consortium spans three distinct application domains, maritime systems, energy grids, and intralogistics, represented by industrial partners KALP GmbH, VIVAVIS AG, SICK AG and KION GROUP AG. The company KALP deploys self-sufficient automated twistlock handling platform based on a hydraulic pressure system. VIVAVIS provides smart IoT solutions especially for the efficient control of smart electricity grids [2]. Associated partners bring further expertise in sensor technology (SICK) and robotics (KION) for intralogistic scenarios [3]. All partners provide either software or hardware solutions to demonstrate how Flowcean can improve testing, operation, and monitoring of CPS. Flowcean applies data driven learning to understand and replicate the individual system behavior. The modeling process is structured into four steps: 1. Loading recorded data or starting a simulation 2. Transforming data to a suitable format 3. Learning models using data driven techniques 4. Evaluating the model’s performance via various metrics Flowcean encompasses both online and offline learning techniques [4],[5]. To be able to model CPS of various domains, the entire pipeline has a modular structure. Thus, each transforming or learning step is composable with others to create distinct pipelines. So far, the design of the framework’s architecture and the implementation of basic examples prove a functioning application. Our upcoming goals are • the analysis of more complex CPS from the domains of the project’s consortium, • finalizing the integration of online and offline learning strategies as well as • the development of tools to use learned models for testing [6], monitoring, or behavioral prediction. Partners: • Fraunhofer Center for Maritime Logistics and Services (CML) • Institute of Embedded Systems, Hamburg University of Technology • Institute of Technical Logistics, Hamburg University of Technology • OFFIS – Institut für Informatik • VIVAVIS AG • KALP GmbH • SICK AG • KION GROUP AG The project is funded by the Federal Ministry of Education and Research (BMBF). Contact: Hendrik Rose & Markus Knitt Institute for Technical Logistics hendrik.wilhelm.rose@tuhh.de, markus.knitt@tuhh.de Maximilian Schmidt & Swantje Plambeck & Görschwin Fey Institute of Embedded Systems maximilian.schmidt@tuhh.de, swantje.plambeck@tuhh.de, goerschwin.fey@tuhh.de Bibliography [1] M. Knitt et al., “Towards the Automatic Generation of Models for Prediction, Monitoring, and Testing of Cyber-Physical Systems”, in International Conference on Emerging Technologies and Factory Automation (ETFA), 2023. [2] L. Fischer, J.-M. Memmen, E. M. S. P. Veith, and M. Tröschel, “Adversarial Resilience Learning - Towards Systemic Vulnerability Analysis for Large and Complex Systems”, ArXiv, 2018. [3] M. Knitt, Y. Elgouhary, J. Schyga, H. Rose, P. Braun, and J. Kreutzfeldt, “Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics”, Logistics Journal : Proceedings, no. 1, 2023. [4] J. Schyga, S. Plambeck, J. Hinckeldeyn, G. Fey, and J. Kreutzfeldt, “Decision Trees for Analyzing Influences on the Accuracy of Indoor Localization Systems”, in International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2022. [5] E. Veith et al., “palaestrAI: A Training Ground for Autonomous Agents”, in European Simulation and Modelling Conference (ESM), 2023. [6] S. Plambeck and G. Fey, “Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models”, in International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2023.