
 
1 INTRODUCTION 

In the process of lateral migration of the river 
channel, bank erosion plays the most important 
role. Study of the riverbank erosion is a key issue 
in meander restoration programs, which are often 
essential for rehabilitation of aquatic life. Land 
loss due to the riverbank retreat have a strong im-
pact on floodplain dwellers, agricultural lands on 
the margins of the rivers, bridge crossings, bank 
protection works and other hydraulic construc-
tions. Neglecting this process during flood events 
may result in underestimation in risk analysis of 
flood prone areas. 

Therefore, it is not surprising that several re-
search works have been achieved, especially in 
last two decades, to model bank erosion process 
(for example Mosselmann,1992; Kovacs and 
Parker, 1994; Shimizu et al., 1996; Nagata et al., 
2000; Schmautz,2003; Chen and Duan,2006; 
Darby et al.,2007; Rinaldi, et al,2008). A review 
of several other research works can be found in 
ASCE Task Committee (1998a, 1998b). 

Apart from different numerical and mathemati-
cal approaches applied in the mentioned works, 
what distinguishes them substantially, is the num-
ber of physical processes considered in their ap-
proaches. However, the reliability of numerical 
models do not exclusively lie on the number of 
processes being modelled, but (as well as) on the 
fact that to what extent the applied mathematical 
approaches are capable to describe the physical 
process being modelled. The latter depends on 
how well these processes have been understood. 
Hence, a plenty of researches have been devoted 
to improve the knowledge on bank erosion proc-
ess and mechanisms in the last two decades, espe-
cially recently, which are summarized in the fol-
lowing. 

1.1 Riverbank erosion process 

It is well-known that riverbank retreat occurs both 
by continuous fluvial erosion as well as abrupt 
bank failure (Thorne,1982; Lawler et al. 
1997;ASCE Task Committee, 1998;etc.). River-
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bank-toe erosion causes to increase the bank 
height and the slope of the bank to the extent that 
eventually riverbank mass failure occurs (Carson 
and Kirkby, 1972;Thorne, 1982;Simon et al. 
2000). 

 Abrupt bank failure in cohesive soils is in form 
of rotational (circular) or planar failure surfaces 
(Thorne,1982). While in non-cohesive soils, bank 
failure is mainly due to dislodgement and ava-
lanche of the individual particles in submerged 
area of the bank with higher slope than the angle 
of repose, or due to shear failure along shallow, 
very slightly curved slip surfaces (ASCE Task 
Committee,1998). Consolidation and cementation 
increases the stability of natural non-cohesive 
slopes beyond its critical angle of repose, specially 
in fine sandy soils.  

Eroding of underlying non-cohesive layers cre-
ates overhang in cohesive soils which may even-
tually fail in either of three modes: shear, beam 
and tensile failure (Thorne and Tovey,1981). 
Shear and beam failure result in a similar vertical 
bank profile after failure. Beam failure is a result 
of tension cracks in the overhang. Tensile failure 
occurs when only the lower part of an overhang 
block fails along an almost horizontal failure sur-
face.  

In the last decade an appreciable advancement 
has been attained in understanding the mechanism 
and processes involved in bank failure. Positive 
pore water pressure in the riverbank acts to reduce 
bank stability, particularly in rapid draw down 
stage in channels following a high flow (ASCE 
Task Committee,1998, Simon et al. 2000, etc.). 
The negative pore water pressure above the water 
surface acts as an apparent cohesion and resists 
against failure, which increases the overall stabil-
ity of the bank in cohesive soils (Casagli, et 
al.,1997, 1999; Curini, 1998; Simon et al., 2003, 
Rinaldi, et al.,2004) as well as local stability of 
the unsaturated zone in non-cohesive (sandy) soils 
(Nasermoaddeli and Pasche 2008).Confining pres-
sure of the water stage in the river increases the 
stability of the cohesive riverbank (Darby and 
Thorne,1996; Casagli, et al. 1999), which may not 
hold for the non-cohesive soils (Nasermoaddeli 
and Pasche 2008). 

Seepage out of the riverbank removes finer 
sediments and results in local failure of the bank  
referred to sapping (Ullrich et al., 1986;Hagerty, 
1991; Fox et al.,2007;Wilson et al.,2007 and Can-
cienne et al.,2008), which results in formation of 
cavities or undercutting zones in the riverbank. 
This process is one of  the important destabilizing 
factors, especially in non-cohesive (sandy) soils. 

Undercutting process in sandy riverbanks, due 
to the bank-toe erosion and cantilever failure, has 
been studied with respect to the dynamics of the 

flow by Nasermoaddeli and Pasche(2008). When 
the flow is not bank full in such rivers, the failure 
surface comprises primarily and mainly the sub-
merged part of the bank. This is in sharp contrast 
to the failure mechanism in cohesive soils, in 
which the failure block extends via tension cracks 
up to the top of the bank (Osman and Thorne, 
1988; Darby et al,2000). 

Bank-toe is eroded due to the fluvial erosion 
resulting in local steepening of the riverbank in 
the submerged area (Fig.1-A). It can be postulated 
that as soon as the submerged riverbank local 
slope reaches beyond its consolidated angle of re-
pose (φ

c
), the bank material of the over-steepened 

area (up to the water surface) slides in a shallow 
layer (in a cascade form) into the scoured bank-toe 
leaving a hanging zone over the water surface and 
an undercutting zone under the water surface (Fig. 
1-B). This process introduces a complex bank ge-
ometry comprising vertical as well as negative 
slope in the undercutting and overhang zones.  

Matric suction (negative pore water pressure) 
together with consolidation in the unsaturated 
zone of the bank act as an (apparent) cohesion 
force to stick the fine sand particles together ena-
bling the formation of the overhang. The overhang 
can be further stabilized due to cementation and 
the small vegetation roots.  

The failed bank material deposits at bank-toe in 
form of a slump or with saturated angle of re-
pose(φ

s
) as shown in Fig. (1-B), or transported as 

bed and wash load depending on the local flow 
and sediment transport capacity and sediment size. 

Therefore, three different zones can be distin-
guished on the incised riverbank according to their 
slopes (Fig. 1-b), which are induced due to differ-
ent geotechnical and fluvial processes. This dis-
tinguishes mainly from earlier works, in which 
generally one angel of repose has been considered 
as the stability criterion of the whole bank slope in 
non-cohesive soils and a parallel bank retreat has 
been assumed (Hasegawa,1981; Nagata et al,2000; 
Jang und Shimizu,2005; Duan et al, 2001; Haf-
ner,2008). Furthermore, in earlier works, forma-
tion and stability analysis of the overhang in non-
cohesive riverbank has not been considered. 

In the following, a mathematical model to 
simulate bank erosion process in non-cohesive 
sandy soils is presented. Undercutting due to 
bank-toe erosion, cantilever failure (shear and ten-
sile types) and the effect of vegetation (Cancienne 
et al,2008) are considered in this model. Since 
non-cohesive bank failure in saturated portion is 
not deep-seated in the bank, as in cohesive soils, 
the effect of the sharp gradient of phreatic line in 
the vicinity of the bank surface (or failure plane) 
has been neglected, assuming to be in equilibrium 
with water stage in the river. This issue should be 



further studied by application of the seepage mod-
els. 
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Figure 1. Schematic demonstration of undercutting process 
in non-cohesive banks. A) prior to the bank slide. B) After 
bank slide.  

The mathematical model has been integrated 
into the morphodynamic model of RMA10s-
Kaylpso and verified by field measurement. The 
result of field measurements has been already pre-
sented in Nasermoaddeli and Pasche(2008).  

2 MATHEMATICAL APPROACH 

The generally accepted practice to model morpho-
logical evolution is the integration of hydrody-
namic and sediment transport with a morphologi-
cal model (bed and bank evolution models). In the 
following the hydrodynamic model is presented 
followed by sediment transport and morphody-
namic model. 
 

2.1 Hydrodynamic model 

The governing equations of shallow flow in rivers 
can be described by the 2D depth-averaged Na-
vier-Stocke’s equations as follows: 
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where h = water depth, t= time, ρ = water density, 
g = gravity, z0= bed elevation, u and v = depth-
averaged velocities in x and y directions , respec-
tively. τ = depth-averaged Reynolds shear stresses 
(indices show the tensor direction). τ w and τ b  = 
wind and bed shear stresses, respectively. Eq. (1) 
is the 2D depth–averaged continuity equation and 
Eqs. (2) and (3) are 2D depth-averaged momen-
tum equations in x and y directions, respectively. 
Coriolis Force and dispersion terms are not in-
cluded in the above equations. Applying eddy-
viscosity concept of Boussinesq, the Reynolds 
shear stresses can be described as follows (in ten-
sor form) : 
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where τij = Reynolds stress tensor in ij direction 
with i,j=1,2 (1=x and 2=y directions), ui´ and uj´ = 
instantaneous velocity fluctuation components 
with bar over them indicating time-averaged val-
ues, υt= eddy viscosity, ui and uj = depth-averaged 
velocity components, δ= Kronecker delta, and k = 
turbulent kinetic energy which is defined as fol-
lows: 
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A turbulence model is required to model the 
eddy viscosity and close the above shallow water 
equations (Eq. 1-3). Among different available 
turbulent models (zero equation to two equation 
and Reynolds stress models, Rodi, 1993), Sma-
gorinsky turbulent model has been applied here, 
which reads as follows: 
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where cs =empirical factor between 0.065 to 0.23 
(Forkel,1995) and ∆= (area of the grid)

1/2
. 

2.2 Sediment transport 

It is assumed that sediment transport is in equilib-
rium condition, implying that if the sediment con-
centration is greater than sediment transport ca-
pacity, net deposition takes place, whereas if 
sediment concentration is less than transport ca-
pacity net bed erosion occurs. The total sediment 
transport can be computed using depth-averaged 
advection-diffusion equation as follows: 
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where c = total depth-averaged sediment concen-
tration, Γ =νt/σ turbulent diffusion coefficient (σ = 
Schmit number), Sbank = rate of bank erosion , S= 
net rate of sediment deposition(-) or erosion(+), 
which is computed as follows: 
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where ceq = equilibrium total sediment concentra-
tion and tc = an adaptation time scale for deposi-
tion or re-suspension of sediment. 

To compute equilibrium total sediment trans-
port (ceq), the equilibrium bed load and suspended 
load concentration has been computed separately 
using the method of van Rijn (1984a,b) and 
summed up together. 
It is recognized by the authors that modeling sus-
pended and bed load transport separately (either as 
equilibrium or non-equilibrium formulation) may 
improve the sediment transport modeling, how-
ever, the focus of this work has been primarily on 
modeling bank retreat process.  

2.3 Bed evolution 

To model bed elevation change due to the net ero-
sion or deposition the following equation was ap-
plied (King,2005): 
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where λ= bed porosity, ρs = bed sediment density 
and the rest of the parameters have been already 
declared. In the literature, other forms of the above 
equation can be found(for example, Phillips and 
Sutherland ,1989).  

2.4 Bank evolution 

The above-mentioned new concept of three angle 
of repose (bank-toe, undercutting zone and over-
hang zone) has been applied to model bank-
erosion process in the present work.  

Based on the field measurements (Naser-
moaddeli and Pasche,2008) the slope of failure 
plain in case of cantilever failure (shear failure) 
may vary from a steep positive to a negative value. 
However, only steep positive values are consid-
ered here. The failure of the overhang occurs 
when the safety factor (Eq.10) is less than 1. 
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where SF= safety factor; cr= cohesion due to 
the root reinforcement; Leff. = the effective length 
(area per width) of the root zone. ψ is force pro-
duced by matric suction on the unsaturated part of 
the failure surface (kN/m); W =weight of the soil 
block (kN); φu

 =most critical slope of the failure 
surface of the unsaturated consolidated soil of the 
overhang, which should be determined as a cali-
brating parameter or on-site measurements, and 
φ´

= friction angle. The term φb
 varies for all soils, 

and for a given moisture content (Fredlund and 
Rahardjo, 1993), having a normal  range of 10-20° 
( Simon et al., 2000, Casagli et al 1999). Data on 
φb

 are particularly lacking for alluvial materials, 
which should be calculated by measurements us-
ing Tensiometer or similar devices.  

Pore pressure distribution in the riverbank can 
be modelled using Richards equation (Dapporto et 
al.,2001,2003; Rinaldi et al.,2004 and Darby et 
al., 2007,Rinaldi et al., 2008). However, as al-
ready mentioned, due to assumption of equilib-
rium state with water stage in the river this ap-
proach was not followed. As a simplification, the 
pore water pressure was approximated by a simple 
quadratic function (similarly a linear function has 
been applied by Langedoen and Simon, 2008). In 
the submerged zone of the bank, pore pressure has 
been considered to be hydrostatic.   

Furthermore, it is assumed that if the overhang 
is submerged due to the water rise in the river, the 
submerged portion would collapse in form of ten-
sile failure (Thorne and Tovey,1981) immediately 
due to loss of matric suction (equilibrium state 
with water stage in the river). This assumption 
may lead to significant difference with the actual 
pore pressure in submerged zone of the overhang, 
depending on the duration of submergence. To the 
extent of the knowledge of the authors, there is 
still no study available on the pore pressure distri-
bution in partly submerged overhang blocks. This 
will be a part of the future work of the authors 
team. 

Two methods for distribution of eroded bank 
materials have been applied. In the first method, 
the whole eroded material due to the all three pos-
sible modes of erosion (avalanche, tensile and 
cantilever failure) are summed to a lump mass and 
distributed using a cumulative mass distribution 
function over bank-toe. Alternatively, the eroded 
materials resulting of each mode of erosion are 
passed separately to Eq.(7) as a source term. 



3 NUMERICAL APPROACH 

The above-mentioned riverbank erosion model 
has been integrated into the RMA10s-Kalypso 
model, which is based on the well known finite 
element fluvial model of RMA10s (King,2005). 

At each time step, hydrodynamic and sediment 
transport models are solved decoupled. After up-
dating bed elevation based on the Eq.(9), the sta-
bility of the submerged zone of the river is exam-
ined, with the method already described. It is then 
controlled for a probable tensile failure of the 
submerged part of the overhang. Finally, the sta-
bility of the overhang is examined using Eq. (10). 
The finite element nodes are updated after distri-
bution of eroded materials using the either meth-
ods described above. At each time step the above 
procedure is repeated. 

Formation of undercutting and overhang result 
in vertical and negative slopes in the bank topog-
raphy, which is not allowed in numerical mesh of 
2D depth-averaged models. Even in 3D hydrody-
namic models, which apply layered 3D elements, 
such deformations are not permissible. To solve 
this problem, a morphodynamic domain conjugate 
to the finite element mesh was defined, on which 
the complex river bank evolution is modeled.  

Hydrodynamic, sediment transport and bed 
evolution models are solved on the finite element 
domain. Each finite element node along the cross 
sections, under bank erosion study, is linked with 
a profile node in morphodynamic domain. The 
nodes in both domains are allowed to be vertically 
displaced, while the profile nodes at the front of 
the undercutting at the lower(inner) edge of the 
overhang as well as the outer edge of the overhang 
are allowed to be adapted laterally and vertically. 
The former is the case by developing undercutting 
(state 1 in Fig.2) and the latter by occurrence of 
tensile failure (state 2 in Fig.2). 

As it is observed form this figure, all of the FE-
nodes in submerged zones belong to the both do-
mains, however the profile nodes in overhang 
zone belong exclusively to the conjugate morpho-
dynamic domain. After avalanche (slide) of the 
submerged zone, due to over steepening of bank-
toe, the profile nodes as well as FE-nodes in this 
zone are projected on a slope with angle of φ

c
. 

This yields in lateral displacement of the undercut-
ting front. The rise of water stage in the river 
above the lower edge of the overhang results in 
tensile failure of the submerged overhang, which 
is modeled by eliminating the nodes defining un-
dercutting front and overhang outer edge. New 
nodes in profile domain are generated in place of 
these nodes along the new water stage.  

By the failure of the overhang all of the exclu-
sive nodes in profile domain are omitted and both 

domains turns to be identical (state 3 in Fig.2). By 
further advancement of erosion new undercutting 
front and overhang (outer) edge nodes are gener-
ated. 

By cantilever failure of the overhang, a positive 
slope  φu

 <≈ 90° is allowed here, which is deter-
mined by calibration. More studies is required to 
define this angle analytically by considering dif-
ferent parameters such as pore pressure distribu-
tion in the overhang, water stage in the river, ef-
fect of the vegetation root reinforcement and 
shape of the overhang block. 
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Figure 2. Conjugate numerical domains for simulation of 
bank erosion with complex geometry.  

As it is observed in Fig. (2) , if the undercutting 
front does not coincides with a FE node, a new 
exclusive node is generated within morphological 
domain with no counterpart in FE domain. De-
pending on the element size, this may introduce a 
minor deviation between the flow field in FE do-
main and the real flow field that would have ex-
isted in the morphodynamic domain. However, 
this is close to the lateral boundary and near water 
level, which should introduce minimum error in 
the flow field near bank zone. 

4 VERIFICATION DATA 

To study riverbank erosion in non-cohesive 
(sandy) soils, an intensive field measurement was 
conducted along a river bend of a small shallow 
river, Hardebek-Brokenlander Au in North of 
Germany, by the authors (Nasermoaddeli and 
Pasche,2008). The river discharges into the upper 
reach of the river Stoer near Neumuenster and had 
been restored to a natural form in 2002. The bed 
and bank of river is composed of mainly fine sand 
(d50=0.2 mm) and  the bank top is covered with 
vegetation during the whole year. 

Bank profile was measured using 3D terrestrial 
laser scanner between October 2006 and March 
2008, intermittently. Bathymetry was measured 
using RTK-GPS. Three cross sections along the 
river bend (entrance to the bend, upstream of the 



bend apex and at bend apex) were selected for 
verifying the new developed morphodynamic 
model. 

Flow and water level was monitored once from 
January to April 2007 and another time during the 
same period in 2008. The largest flood event oc-
curred in January 2007(Fig. 3), which forms the 
current simulation period.  
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Figure 3. Discharge and water level hydrograph used for 

morphodynamic simulation. 

5 SIMULATION RESULTS 

During the simulation period the discharge varied 
from 1.19 to 3.03 m

3
/s and sediment concentration 

discharging to the river reach varied from 70 to 
397 mg/l. The unsteady morphodynamic simula-
tion comprised 194 time steps with a variable du-
ration (6 minutes to 20 hours). 

The result of simulation of bank retreat for the 
period of January 5 to March 30,2007 using the 
new developed morphodynamic model has been 
presented in Fig.( 4 and 5). Since almost no bank 
retreat was measured at entrance section to the 
bend, the result of simulations for this section has 
not been presented in these figures.  

To account for cementation and consolidation, 
an increased critical (saturated) angle of repose  
φ

c
=60° and unsaturated critical angle of repose of 

φu
 =84° for overhang zone have been applied. The 

lump method of distribution of waste bank mate-
rial has been applied, since the other mentioned 
method was accompanied with instability in few 
time steps. A quadratic function was applied for 
simulation of negative pore pressure distribution 
over water table by considering equilibrium with 
water stage in the river. 

As it is observed from Fig. (4), the model has 

been able to predict bank profile precisely at the 

section upstream of the bend apex, however, the 

bank retreat of bank top at bend apex has been 

over-predicted (68% error). In both cases, satisfac-

tory results could not be attained in bank-toe zone. 

At the first section bed elevation has been under-

predicted, while at the second section it has been 

over-predicted. That can be correlated to four ma-

jor factors. First, the applied hydrodynamic model 

does not include dispersion terms to consider the 

effect of secondary currents in increase of bed 

shear stress towards the bend apex. Nevertheless, 

the current available dispersion models are based 

on simplified assumptions, which hold only on the 

center line of a circular channel (Yalin,1992) and 

over-predict the shear stress at outer bend (Haf-

ner,2008). Second, the total sediment transport 

model applied here is a simple model that does not 

account for the non-equilibrium bed load transport 

across river bend and the effect of secondary cur-

rents are not either considered in bed load trans-

port. Third, the applied bed evolution model does 

not account for bed load transport effect (Exner 

equation) but total load. Fourth, the lump distribu-

tion of the failed bank materials may lead to erro-

neous distribution of material at bank-toe in river 

bend. 
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Figure 4. Bank profile before and after 25 simulated days 
compared with measurements. 

To compare the simulation results with current 
practice of non-cohesive bank erosion modeling, a 
simulation using one critical angle of repose 



(φ
c
=60°), here on called 1-slope, and a simulation 

without considering negative pore pressure func-
tion with two slopes, namely, φ

c
=60°  and φu

 
=84°, here on called 2- slopes, were achieved. The 
result of this comparison is presented in Fig.(5). 

As it is observed from this figure, the current 
approach has extremely enhanced the capability of 
simulation of the riverbank retreat in both sec-
tions. The comparison of the amount of the over-
predication of the bank retreat using the men-
tioned three methods in respect to the actual bank 
retreat has been presented in table(1). 
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Figure 5 . Comparison of the application of the new model 
and earlier methods of simulation of bank erosion. 

As it is observed form this table, the new mor-
phological model were up to 6 time more accurate 
than the traditional 1-slope method. Although the 
2-slope method improves the simulation result, 
however neglecting effect of the negative pore 
pressure deteriorates the simulation accuracy up to 
two times. 

 
Table 1. Comparison of the amount of over-predication (%) 
of the bank retreat using three described methods ______________________________________________ 
Over-predication(%) Current model 1-slope 2-slopes ______________________________________________ 
Upstream of apex  ≈0

*
 280 100 

At apex  68 392 150 _____________________________________________ 

* Disregarding a small vegetated zone hanged from the top 
of the bank by means of vegetation roots. 

6 CONCLUSION 

Based on the high resolution field measurements, 
a novel approach has been developed to model 
bank erosion process in non-cohesive (sandy) soils 
that improves appreciably the accuracy of bank re-
treat modeling in such soils. Undercutting of non-
cohesive riverbanks due to the bank-toe erosion 
and cantilever failure (shear and tensile types) 
have been considered in this concept. Further-
more, the effect of negative pore water pressure 
was approximated using an analytical function. 
Inclusion of such a function gained an improve-
ment of more than double fold in simulation of 
bank retreat. By comparing the traditional method 
of non-cohesive bank erosion simulation (1-slope 
models) with the new developed method, up to 
nearly 6 fold accuracy has been attained in simula-
tion of bank retreat at two cross sections along a 
river bend during one month flooding period. 

Further investigation is required to improve the 

stability analysis of the overhang failure in sandy 

soils ( both shear and tensile types). In the current 

work, undercutting due to sapping failure was not 

considered. A comprehensive study of the effect 

of pore pressure dynamic in sapping failure of 

non-cohesive riverbanks is recommended. The 

mechanism of distribution of wasted mass on 

bank-toe is an issue which needs more investiga-

tion and plays an important role in long-term 

simulation. Finally, the effectiveness of the pro-

posed model should be further examined in long-

term simulation.  
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